Astronomy Formula Sheet

Intensity Ratio:	$m_B - m_A = 2.5 \log\left(\frac{I_A}{I_B}\right)$ $\frac{I_A}{I_B} = 10^{0.4(m_B - m_A)}$	m = Magnitude I = Intensity
Small Angle Formula:	$\theta = 206265 \frac{D}{d}$	θ = Angular Diameter (arcsecs) D = Diameter d =Distance
Circular Velocity:	$v = \sqrt{\frac{GM}{r}}$	v = circular velocity (m/s) G = Gravitational Constant M = Mass (kg) r = radius (meters)
Resolving Power:	$\Delta \theta = 251643 \frac{\lambda}{d}$	$\Delta \theta = \text{Angular separation (arcsecs)}$ $\lambda = \text{Wavelength}$ d = Optic Diameter
Compare LGP:	$\frac{LGP_A}{LGP_B} = \left(\frac{D_A}{D_B}\right)^2$	LGP = Light Gathering Power D = Optic Diameter
Magnification:	$M = \frac{F_O}{F_E}$	M = Magnification Power $F_O = \text{Objective focal length}$ $F_E = \text{Eyepiece focal length}$
Wien's Law:	$\lambda_{peak} = \frac{2900000}{T}$	$\lambda_{peak} = \text{Peak wavelength (nm)}$ T = Temperature (K)
Stefan-Boltzmann Law:	$F = \sigma T^{4}$ $L = 4\pi\sigma R^{2}T^{4}$ $\frac{L}{L_{\odot}} = \left(\frac{R}{R_{\odot}}\right)^{2} \left(\frac{T}{T_{\odot}}\right)^{4}$	F = Flux (luminosity/area) (W/m2) $\sigma = Stefan-Boltzmann Constant$ T = Temperature (K) L = Luminosity (W) R = Radius (m)
Redshift:	$z + 1 = \frac{\lambda_O}{\lambda_E}$	z = Redshift $\lambda_O = \text{Observed Wavelength}$ $\lambda_E = \text{Emitted Wavelength}$
Doppler Formula:	v = cz	v = Velocity (m/s) c = Speed of light (m/s) z = Redshift
Relativistic Doppler Shift:	$z + 1 = \sqrt{\frac{1 + (v/c)}{1 - (v/c)}}$	v = Velocity (m/s) c = Speed of light (m/s) z = Redshift
Hubble's Law:	$v = H_0 d$	v = Recessional velocity (km/s) $H_0 =$ Hubble's Constant d = Distance
Fusion Explained:	$E = mc^2$	E = Energy (J) m = Mass (kg) c = Speed of light (m/s)

Parallax:	$d = \frac{1}{p}$	d = Distance (pc) p = Parallax Angle (arcseconds)
F Ratio:	$\frac{L_f}{D_O}$	$L_f =$ Focal Length $D_O =$ Objective Diameter
Distance Modulus:	m - M = -5 + 5log(d) $d = 10^{\frac{m-M+5}{5}}$	m = Apparent magnitude M = Absolute Magnitude d = Distance (pc)
Orbit Eccentricity:	$e = \frac{c}{a}$	e = Orbital Eccentricity c = Distance from focus to center a = semimajor axis
Aphelion/Perihelion:	$R_a = a(1+e)$ $R_p = a(1-e)$	$R_a = \text{Orbit Aphelion}$ $R_p = \text{Orbit Perihelion}$ a = Semimajor Axis e = Eccentricity
Kepler's 3rd Law:	$M_A + M_B = \frac{a^3}{p^2}$ $p^2 = \frac{a^3}{M_A + M_B}$	M = Mass (solar masses) a = Semimajor axis (AU) p = Orbital Period (years)
Mass-Luminosity Relation:	$L = M^{3.5}$	M = Mass (solar masses) L = Luminosity (Solar luminosity)
Stellar Lifetime:	$\tau = 10^{10} M^{-2.5}$	M = Mass (solar masses) $\tau = \text{Stellar Lifetime (years)}$
Schwarzschild Radius:	$r_s = \frac{2Gm}{c^2}$	r_s = Schwartzchild Radius (meters) G = Gravitational Constant c = Speed of light r = radius (meters)
Universal Gravitation:	$F = G \frac{m_A m_B}{r^2}$	F = Gravitational Force (N) G = Gravitational Constant m = mass (kg) r = radius (meters)
Inverse-Squares Law:	$I = \frac{L}{4\pi d^2}$	I = Light Intensity (W/m2) L = Luminosity (W) d = Distance (m)
Vacuum Frequency:	$f = \frac{c}{\lambda}$	f = Wave frequency (Hz) c = Speed of Light (m/s) λ = wavelength (m)
Hubble Time:	$T_U = \frac{9.778 \times 10^{11}}{H_0}$	T_U = Age of the Universe (years) H_0 = Hubble Constant (km/s/Mpc)

Constants

Speed of Light $= c = 3 \times 10^8 \text{ m/s}$ Gravitational Constant = $G = 6.67 \times 10^{-11} N m^2/kg^2$ Mass of Earth = $M_{\oplus} = 5.97 \times 10^{24}$ kg Radius of Earth = $R_{\oplus} = 6378$ km Mass of the sun = M_{\odot} = = 1.99 × 10³⁰ kg Radius of the sun = $R_{\odot} = 6.96 \times 10^5$ km Effective Temperature of the sun = $T_{\odot} = 5778$ K Luminosity of the sun = $L_{\odot} = 3.9 \times 10^{26} \text{W}$ Mass of the Moon = $M_{\mathbb{C}} = 7.346 \times 10^{22}$ kg Radius of the Moon $= R_{\mathfrak{C}} = 1738.1$ km Mass of a proton = $m_p = 1.6726 \times 10^{-27}$ kg Mass of an Electron = $m_{e^-} = 9.109 \times 10^{-31}$ kg Hubble's Constant = $H_0 = 70 \text{ km/s/Mpc}$ (Note: There is ongoing debate about the actual value) Stefan-Boltzmann Constant = $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$ Planck's Constant = $h = 6.626 \times 10^{-34}$ J s Boltzmann Constant = $k_B = 1.380 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$ $H\alpha$ Spectral Line = 656.28 nm Type Ia Supernova Absolute Magnitude = -19.3

Unit Conversions

1 Astronomical Unit = 1 AU = 1.5×10^8 km 1 Parsec = 1 pc = 3.09×10^{13} km = 3.26 ly 1 Light Year = 1 ly = 9.46×10^{12} km 1 Arc Minute = $1' = (\frac{1}{60})^{\circ} = (1.667 \times 10^{-2})^{\circ}$ 1 Arcsecond = $1'' = (\frac{1}{60})' = (1.667 \times 10^{-2})'$ 1 year = 31557600 seconds 1 Megaton (energy) = 1,000,000 tons of TNT = 4.184×10^{15} J

Important Note:

If constants or unit conversions are provided on the exam, use those instead of these.