## Astronomy Formula Sheet

| Intensity Ratio: | $\begin{aligned} & m_{B}-m_{A}=2.5 \log \left(\frac{I_{A}}{I_{B}}\right) \\ & \frac{I_{A}}{I_{B}}=10^{0.4\left(m_{B}-m_{A}\right)} \end{aligned}$ | $\begin{aligned} & m=\text { Magnitude } \\ & I=\text { Intensity } \end{aligned}$ |
| :---: | :---: | :---: |
| Small Angle Formula: | $\theta=206265 \frac{D}{d}$ | $\begin{aligned} & \theta=\text { Angular Diameter (arcsecs) } \\ & D=\text { Diameter } \\ & d=\text { Distance } \end{aligned}$ |
| Circular Velocity: | $v=\sqrt{\frac{G M}{r}}$ | $\begin{aligned} & v=\text { circular velocity }(\mathrm{m} / \mathrm{s}) \\ & G=\text { Gravitational Constant } \\ & M=\text { Mass (kg) } \\ & r=\text { radius (meters) } \end{aligned}$ |
| Resolving Power: | $\Delta \theta=251643 \frac{\lambda}{d}$ | $\begin{aligned} & \Delta \theta=\text { Angular separation (arcsecs) } \\ & \lambda=\text { Wavelength } \\ & d=\text { Optic Diameter } \end{aligned}$ |
| Compare LGP: | $\frac{L G P_{A}}{L G P_{B}}=\left(\frac{D_{A}}{D_{B}}\right)^{2}$ | $L G P=$ Light Gathering Power $D=$ Optic Diameter |
| Magnification: | $M=\frac{F_{O}}{F_{E}}$ | $M=$ Magnification Power $F_{O}=$ Objective focal length $F_{E}=$ Eyepiece focal length |
| Wien's Law: | $\lambda_{\text {peak }}=\frac{2900000}{T}$ | $\lambda_{\text {peak }}=$ Peak wavelength ( nm ) <br> $T=$ Temperature (K) |
| Stefan-Boltzmann Law: | $\begin{aligned} F & =\sigma T^{4} \\ L & =4 \pi \sigma R^{2} T^{4} \\ \frac{L}{L_{\odot}} & =\left(\frac{R}{R_{\odot}}\right)^{2}\left(\frac{T}{T_{\odot}}\right)^{4} \end{aligned}$ | $\begin{aligned} & F=\text { Flux (luminosity/area) }\left(\mathrm{W} / \mathrm{m}^{2}\right) \\ & \sigma=\text { Stefan-Boltzmann Constant } \\ & T=\text { Temperature (K) } \\ & L=\text { Luminosity (W) } \\ & R=\text { Radius }(\mathrm{m}) \end{aligned}$ |
| Redshift: | $z+1=\frac{\lambda_{O}}{\lambda_{E}}$ | $\begin{aligned} & z=\text { Redshift } \\ & \lambda_{O}=\text { Observed Wavelength } \\ & \lambda_{E}=\text { Emitted Wavelength } \end{aligned}$ |
| Doppler Formula: | $v=c z$ | $\begin{aligned} & v=\text { Velocity }(\mathrm{m} / \mathrm{s}) \\ & c=\text { Speed of light }(\mathrm{m} / \mathrm{s}) \\ & z=\text { Redshift } \end{aligned}$ |
| Relativistic Doppler Shift: | $z+1=\sqrt{\frac{1+(v / c)}{1-(v / c)}}$ | $\begin{aligned} & v=\text { Velocity }(\mathrm{m} / \mathrm{s}) \\ & c=\text { Speed of light }(\mathrm{m} / \mathrm{s}) \\ & z=\text { Redshift } \end{aligned}$ |
| Hubble's Law: | $v=H_{0} d$ | $\begin{aligned} & v=\text { Recessional velocity (km/s) } \\ & H_{0}=\text { Hubble's Constant } \\ & d=\text { Distance } \end{aligned}$ |
| Fusion Explained: | $E=m c^{2}$ | $\begin{aligned} & E=\operatorname{Energy}(\mathrm{J}) \\ & m=\text { Mass }(\mathrm{kg}) \\ & c=\text { Speed of light }(\mathrm{m} / \mathrm{s}) \end{aligned}$ |


| Parallax: | $d=\frac{1}{p}$ | $\begin{aligned} & d=\text { Distance ( } \mathrm{pc} \text { ) } \\ & p=\text { Parallax Angle (arcseconds) } \end{aligned}$ |
| :---: | :---: | :---: |
| F Ratio: | $\frac{L_{f}}{D_{O}}$ | $\begin{aligned} & L_{f}=\text { Focal Length } \\ & D_{O}=\text { Objective Diameter } \end{aligned}$ |
| Distance Modulus: | $\begin{aligned} & m-M=-5+5 \log (d) \\ & d=10^{\frac{m-M+5}{5}} \end{aligned}$ | $\begin{aligned} & m=\text { Apparent magnitude } \\ & M=\text { Absolute Magnitude } \\ & d=\text { Distance (pc) } \end{aligned}$ |
| Orbit Eccentricity: | $e=\frac{c}{a}$ | $\begin{aligned} & e=\text { Orbital Eccentricity } \\ & c=\text { Distance from focus to center } \\ & a=\text { semimajor axis } \end{aligned}$ |
| Aphelion/Perihelion: | $\begin{aligned} & R_{a}=a(1+e) \\ & R_{p}=a(1-e) \end{aligned}$ | $\begin{aligned} & R_{a}=\text { Orbit Aphelion } \\ & R_{p}=\text { Orbit Perihelion } \\ & a=\text { Semimajor Axis } \\ & e=\text { Eccentricity } \end{aligned}$ |
| Kepler's 3rd Law: | $\begin{aligned} & M_{A}+M_{B}=\frac{a^{3}}{p^{2}} \\ & p^{2}=\frac{a^{3}}{M_{A}+M_{B}} \end{aligned}$ | $\begin{aligned} & M=\text { Mass (solar masses) } \\ & a=\text { Semimajor axis (AU) } \\ & p=\text { Orbital Period (years) } \end{aligned}$ |
| Mass-Luminosity Relation: | $L=M^{3.5}$ | $\begin{aligned} & M=\text { Mass (solar masses) } \\ & L=\text { Luminosity (Solar luminosity) } \end{aligned}$ |
| Stellar Lifetime: | $\tau=10^{10} M^{-2.5}$ | $M=$ Mass (solar masses) <br> $\tau=$ Stellar Lifetime (years) |
| Schwarzschild Radius: | $r_{s}=\frac{2 G m}{c^{2}}$ | $\begin{aligned} & r_{s}=\text { Schwartzchild Radius (meters) } \\ & G=\text { Gravitational Constant } \\ & c=\text { Speed of light } \\ & r=\text { radius (meters) } \end{aligned}$ |
| Universal Gravitation: | $F=G \frac{m_{A} m_{B}}{r^{2}}$ | $\begin{aligned} & F=\text { Gravitational Force (N) } \\ & G=\text { Gravitational Constant } \\ & m=\text { mass (kg) } \\ & r=\text { radius (meters) } \end{aligned}$ |
| Inverse-Squares Law: | $I=\frac{L}{4 \pi d^{2}}$ | $\begin{aligned} & I=\text { Light Intensity }\left(\mathrm{W} / \mathrm{m}^{2}\right) \\ & L=\text { Luminosity }(\mathrm{W}) \\ & d=\text { Distance }(\mathrm{m}) \end{aligned}$ |
| Vacuum Frequency: | $f=\frac{c}{\lambda}$ | $\begin{aligned} & f=\text { Wave frequency }(\mathrm{Hz}) \\ & c=\text { Speed of Light }(\mathrm{m} / \mathrm{s}) \\ & \lambda=\text { wavelength }(\mathrm{m}) \end{aligned}$ |
| Hubble Time: | $T_{U}=\frac{9.778 \times 10^{11}}{H_{0}}$ | $T_{U}=$ Age of the Universe (years) <br> $H_{0}=$ Hubble Constant (km/s/Mpc) |

## Astronomical Constants and Conversions

## Constants

Speed of Light $=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Gravitational Constant $=\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Mass of Earth $=M_{\oplus}=5.97 \times 10^{24} \mathrm{~kg}$
Radius of Earth $=R_{\oplus}=6378 \mathrm{~km}$
Mass of the sun $=M_{\odot}==1.99 \times 10^{30} \mathrm{~kg}$
Radius of the sun $=R_{\odot}=6.96 \times 10^{5} \mathrm{~km}$
Effective Temperature of the sun $=T_{\odot}=5778 \mathrm{~K}$
Luminosity of the sun $=L_{\odot}=3.9 \times 10^{26} \mathrm{~W}$
Mass of the Moon $=M_{\mathbb{C}}=7.346 \times 10^{22} \mathrm{~kg}$
Radius of the Moon $=R_{\mathbb{C}}=1738.1 \mathrm{~km}$
Mass of a proton $=m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of an Electron $=m_{e^{-}}=9.109 \times 10^{-31} \mathrm{~kg}$
Hubble's Constant $=H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \quad$ (Note: There is ongoing debate about the actual value)
Stefan-Boltzmann Constant $=\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Planck's Constant $=h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Boltzmann Constant $=k_{B}=1.380 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$\mathrm{H} \alpha$ Spectral Line $=656.28 \mathrm{~nm}$
Type Ia Supernova Absolute Magnitude $=-19.3$

## Unit Conversions

1 Astronomical Unit $=1 \mathrm{AU}=1.5 \times 10^{8} \mathrm{~km}$
1 Parsec $=1 \mathrm{pc}=3.09 \times 10^{13} \mathrm{~km}=3.26 \mathrm{ly}$
1 Light Year $=1 \mathrm{ly}=9.46 \times 10^{12} \mathrm{~km}$
1 Arc Minute $=1^{\prime}=\left(\frac{1}{60}\right)^{\circ}=\left(1.667 \times 10^{-2}\right)^{\circ}$
1 Arcsecond $=1^{\prime \prime}=\left(\frac{1}{60}\right)^{\prime}=\left(1.667 \times 10^{-2}\right)^{\prime}$
1 year $=31557600$ seconds
1 Megaton $($ energy $)=1,000,000$ tons of $\mathrm{TNT}=4.184 \times 10^{15} \mathrm{~J}$

## Important Note:

If constants or unit conversions are provided on the exam, use those instead of these.

