Formula Sheet

Intensity Ratio:

$$
\frac{I_{A}}{I_{B}}=2.512^{M^{B}-M^{A}}
$$

Magnitude Difference:

$$
M_{A}-M_{B}=2.5 \log \frac{I_{A}}{I_{B}}
$$

Small Angle Formula: $\quad \frac{\text { angular diameter-arcseconds }}{206265}=\frac{\text { linear diameter }}{\text { distance }}$
Circular Velocity:

$$
V_{C}=\sqrt{\frac{G M}{r-\text { meters }}} \quad \begin{aligned}
& \mathrm{M}=\text { mass of central body }(\mathrm{kg}) \\
& \mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg} \\
& * \text { Answer in } \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Compare LGP:
$\frac{L G P_{A}}{L G P_{B}}=\left(\frac{D_{A}}{D_{B}}\right)^{2} \quad \begin{aligned} & \mathrm{D}=\text { diameter } \\ & * \text { Answer in times }(\times)\end{aligned}$
Resolving Power:

$$
\alpha=\frac{11.6}{D(c m)} \quad \begin{aligned}
& \mathrm{D}=\text { diameter }(\mathrm{cm}) \\
& * \text { Answer in arcseconds }
\end{aligned}
$$

$\begin{array}{lll}\text { Magnification: } & M=\frac{F_{O}}{F_{E}} & \begin{array}{l}\mathrm{F}_{0}=\text { focal length of objective } \\ \mathrm{F}_{\mathrm{e}}=\text { focal length of eyepiece }\end{array}\end{array}$
Wien's Law:
$\lambda_{\text {max }}=\frac{3,000,000}{T-\text { degrees Kelvin }} \quad *$ Answer in nm
$\lambda_{\text {max }}=\frac{.2987}{T} \times 10^{8} \AA$
$T=\frac{2.9 \times 10^{8} \AA}{\text { peak } \lambda}$
$\mathrm{T}=\mathrm{K}$
Stefan-Boltzmann Law: $\quad E=\sigma T^{4}\left(\mathrm{~J} / \mathrm{s} / \mathrm{m}^{2}\right) \quad \sigma=5.67 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{2} \mathrm{~s}$ degree ${ }^{4}$

* Answer in J
$\begin{array}{llll}\text { Doppler Formula: } & \frac{V_{r}}{c}=\frac{\Delta_{\lambda}}{\lambda_{o}} & \begin{array}{l}\mathrm{V}_{\mathrm{r}}=\text { radial velocity } \\ \mathrm{c}=300,000 \mathrm{~km} / \mathrm{s}\end{array} & \begin{array}{l}\Delta_{\lambda}=\text { change in } \lambda \\ \lambda_{o}=\text { observed } \lambda\end{array}\end{array}$
Fusion Explained:
$E=m c^{2} \quad \mathrm{~m}=\mathrm{kg} \quad$ * Answer in Joules
$d=\frac{206,265}{p-\text { arcseconds }} \quad \mathrm{p}=$ parallax $\quad *$ Answer in AU
F Ratio:
$\frac{\text { focal length }(\mathrm{mm})}{\text { objective diameter }(\mathrm{mm})}$

Distance Modulus: $\quad m_{v}-M_{v}=-5+5 \log d d=10^{\frac{m_{V}-M_{v}+5}{5}}=p c$
Luminosity of Star: $\quad \frac{L}{L_{\odot}}=\left(\frac{R}{R_{\odot}}\right)\left(\frac{T}{T_{\odot}}\right) *$ Answer in times (\times)
Mass of Binary System: $\quad M_{A}+M_{B}=\frac{a^{3}}{p^{2}} \begin{aligned} & \mathrm{M}=\text { solar masses } \\ & \mathrm{p}=\text { orbital period (yrs) } \mathrm{a}=\mathrm{AU}\end{aligned}$
Kepler's $3^{\text {rd }}$ Law: $\quad p^{2}=a^{3} \quad \mathrm{p}=\operatorname{orbital} \operatorname{period}(\mathrm{yrs}) \mathrm{a}=\operatorname{distance}(\mathrm{AU})$
Mass-Luminosity Relation: $\quad L=M^{3.5} \quad \mathrm{M}=\operatorname{star}$ mass in M_{o} * Answer in times (\times)
Life Expectancy: $\quad T=\frac{1}{M^{2.5}} \quad \begin{aligned} & \text { M }=\text { star mass in } \mathrm{M}_{\mathrm{O}} \\ & * \text { Answer in } \mathrm{O} \text { lifetimes } \times 10 \text { billion = years }\end{aligned}$
Schwarzschild Radius: $\quad R_{S}=\frac{2 G M}{c^{2}} \quad \begin{aligned} & \mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg} \mathrm{M}=\text { mass }(\mathrm{kg}) \\ & \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \text { Answer in } \mathrm{m}\end{aligned}$
Hubble Law:
$V_{r}=\mathrm{Hd}$
$V_{r}=$ velocity of recession of galaxy $(\mathrm{km} / \mathrm{s})$
$\mathrm{H}=20 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \quad \mathrm{d}=$ distance (Mpc)
Redshift:
$Z=\frac{\Delta \lambda}{\lambda_{0}} \quad \Delta \lambda=$ change in $\lambda \quad \lambda_{0}=$ unshifted λ
Age of Universe: $\quad \mathrm{T}_{U}=\frac{1}{H} \times 10^{12}$ years $\begin{aligned} & \mathrm{H}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \\ & \text { * Answer in years }\end{aligned}$
Distance-Rate-Time: $\quad d=r t$
$r=\frac{d}{t}$
$t=\frac{d}{r} \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}$ $m_{1} m_{2}=$ masses of objects in kg
Newton's Law of Gravity: $\quad F=G \frac{m_{1} m_{2}}{r^{2}} \quad \begin{aligned} & \mathrm{r}=\text { distance between the two masses (m) }\end{aligned}$ $\mathrm{F}=$ the strength of the gravitational force (N)
Kepler's $1^{\text {st }}$ Law (Eccentricity): $e=\frac{c}{a}$
Ratio:

$$
\frac{\text { distance }}{\text { size/separation }}
$$

Frequency:

$$
v=\frac{c}{\lambda}
$$

Flux:

$$
\begin{aligned}
& \frac{1}{d^{2}} \\
& L\left(M_{V}\right)=r^{2}
\end{aligned}
$$

$\frac{\text { distance to star }}{\text { diameter of earth's orbit }}=\frac{\text { focal length of scope }(\mathrm{mm})}{\text { parallax shift }} \quad \begin{aligned} & \text { Diameter of orbit: } 300,000 \mathrm{~km} \\ & * \text { Answer in } \mathrm{km}\end{aligned}$
Dispersion Distance:

$$
\begin{aligned}
& D=\frac{T_{2}-T_{1}}{124.5\left(\left(\frac{1}{f_{2}}\right)^{2}-\left(\frac{1}{f_{1}}\right)^{2}\right)} \\
& \left(\frac{1}{400}\right)^{2}-\left(\frac{1}{600}\right)^{2}=3.472 \times 10^{-6} \\
& \left(\frac{1}{400}\right)^{2}-\left(\frac{1}{800}\right)^{2}=4.688 \times 10^{-6} \\
& \left(\frac{1}{600}\right)^{2}-\left(\frac{1}{800}\right)^{2}=1.215 \times 10^{-6}
\end{aligned}
$$

Constants

$$
\begin{gathered}
1 A U=1.495979 \times 10^{11} \mathrm{~m} \\
1 \text { parsec }=206,265 \mathrm{AU} \\
=3.085678 \times 10^{16} \mathrm{~m} \\
=3.261633 \text { light years }
\end{gathered}
$$

1 light year $=9.46053 \times 10^{15} \mathrm{~m}$

$$
c, \text { or the speed of light }=2.997925 \times \frac{10^{8} m}{s}
$$

G, or the gravitational constant $=\left(6.67 \times 10^{(-11)}\right)+\left(m^{3} / \mathrm{s}^{2}\right) / \mathrm{kg}$

$$
\begin{gathered}
M_{\oplus}=5.976 \times 10^{24} \mathrm{~kg} \\
R_{\oplus}=6,378.164 \mathrm{~km} \\
M_{\odot}=1.989 \times 10^{30} \mathrm{~kg} \\
R_{\odot}=6.9599 \times 10^{8} \mathrm{~m} \\
L_{\odot}=3.826 \times 10^{26} \mathrm{~kg}
\end{gathered}
$$

$$
\begin{gathered}
\text { M of the Moon }=7.350 \times 10^{22} \mathrm{~kg} \\
\quad R \text { of the Moon }=1738 \mathrm{~km} \\
M \text { of } H \text { atom }=1.67352 \times 10^{-27} \mathrm{~kg}
\end{gathered}
$$

$$
1 \operatorname{arc} \operatorname{minute}\left(1^{\prime}\right)=\frac{1}{60^{\circ}}
$$

$$
1 \operatorname{arc} \text { second }\left(1^{\prime \prime}\right)=\frac{1}{60^{\prime}}
$$

$$
1 \text { Megaton }=1,000,000 \text { of } T N T=4.5 \times 10^{15} \mathrm{~J}
$$

