Formula Sheet

Intensity Ratio:	$\frac{I_A}{I_B} = 2.512^{M^B - M^A}$	
Magnitude Difference:	$M_A - M_B = 2.5 \log \frac{I_A}{I_B}$	
Small Angle Formula:	$\frac{angular\ diameter-arcseconds}{206265} = \frac{linear\ diameter}{distance}$	
Circular Velocity:	$V_C = \sqrt{\frac{GM}{r-meters}}$	M = mass of central body (kg) G = $6.67 \times 10^{-11} \text{ m}^3/\text{s}^2\text{kg}$ * Answer in m/s
Compare LGP:	$\frac{LGP_A}{LGP_B} = \left(\frac{D_A}{D_B}\right)^2$	D = diameter * Answer in times (×)
Resolving Power:	$\alpha = \frac{11.6}{D(cm)}$	D = diameter (cm) * Answer in arcseconds
Magnification:	$M = \frac{F_O}{F_E}$	F_0 = focal length of objective F_e = focal length of eyepiece
Wien's Law:	$\lambda_{max} = \frac{3,000,000}{T - degrees \ Kelvin} \qquad * \text{Answer in nm}$ $\lambda_{max} = \frac{.2987}{T} \times 10^8 \text{\AA}$	
	$T = \frac{2.9 \times 10^8 \text{\AA}}{\text{peak } \lambda}$	T = K
Stefan-Boltzmann Law:	$E = \sigma T^4 (J/s/m^2)$	$\sigma = 5.67 \times 10^{-8} \text{J/m}^2 \text{s degree}^4$ * Answer in J
Doppler Formula:	$\frac{V_r}{c} = \frac{\Delta_\lambda}{\lambda_o} \qquad \begin{array}{c} V_r = radi \\ c = 300, 0 \end{array}$	al velocity $\Delta_{\lambda} = \text{change in } \lambda$ $\lambda_o = \text{observed } \lambda$
Fusion Explained:	$E = mc^2 \underset{c = 3 \times 10}{\text{m} = \text{kg}}$	* Answer in Joules
Distance to Star:	$d = \frac{206,265}{p-arcseconds}$	p = parallax * Answer in AU
F Ratio:	focal length(mm) objective diameter (mm)	

Distance Modulus:	$m_v - M_v = -$	$-5 + 5\log d \ d = 10^{\frac{m_V - M_v + 5}{5}} = pc$	
Luminosity of Star:	$\frac{L}{L_{\odot}} = \left(\frac{R}{R_{\odot}}\right) \left($	$\left(\frac{T}{T_{\odot}}\right)$ * Answer in times (×)	
Mass of Binary System:	$M_A + M_B = \frac{G}{R}$	$\frac{a^3}{p^2} M = \text{solar masses}$ p = orbital period (yrs) a = AU	
Kepler's 3 rd Law:	$p^{2} = a^{3}$	p = orbital period (yrs) a = distance (AU)	
Mass-Luminosity Relation:	$L = M^{3.5}$	M = star mass in M_0 * Answer in times (×)	
Life Expectancy:	$T=\frac{1}{M^{2.5}}$	M = star mass in M _O * Answer in O lifetimes × 10 billion = years	
Schwarzschild Radius:	$R_S = \frac{2GM}{c^2}$	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{s}^2\text{kg M} = \text{mass (kg)}$ $C = 3 \times 10^8 \text{ m/s}$ * Answer in m	
Hubble Law:	$V_r = Hd$	V_r = velocity of recession of galaxy (km/s) H = 20km/s/Mpc d = distance (Mpc)	
Redshift:	$Z = \frac{\Delta \lambda}{\lambda_{\rm O}}$	$\Delta \lambda$ = change in λ $\lambda_{\rm O}$ = unshifted λ	
Age of Universe:	$T_U = \frac{1}{H} \times 10^{7}$	¹² years $H = 70 \text{ km/s/Mpc}$ * Answer in years	
Distance-Rate-Time:	d = rt		
	$r = \frac{d}{t}$ $t = \frac{d}{r}$	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{s}^2\text{kg}$	
Newton's Law of Gravity:	$F = G \frac{m_1 m_2}{r^2}$	m_1m_2 = masses of objects in kg r = distance between the two masses (m) F = the strength of the gravitational force (N)	
Kepler's 1 st Law (Eccentricity):	$e = \frac{c}{a}$		
Ratio:	distance size/separation		
Frequency:	$v = \frac{c}{\lambda}$		

Flux:

$$\frac{1}{d^2}$$
$$L(M_V) = r^2$$

 $\frac{distance \ to \ star}{diameter \ of \ earth's \ orbit} = \frac{focal \ length \ of \ scope \ (mm)}{parallax \ shift}$ Diameter of orbit: 300,000 km * Answer in km

Dispersion Distance:

$$D = \frac{T_2 - T_1}{124.5 \left(\left(\frac{1}{f_2}\right)^2 - \left(\frac{1}{f_1}\right)^2\right)}$$
$$\left(\frac{1}{400}\right)^2 - \left(\frac{1}{600}\right)^2 = 3.472 \times 10^{-6}$$
$$\left(\frac{1}{400}\right)^2 - \left(\frac{1}{800}\right)^2 = 4.688 \times 10^{-6}$$
$$\left(\frac{1}{600}\right)^2 - \left(\frac{1}{800}\right)^2 = 1.215 \times 10^{-6}$$

Constants

$$1 AU = 1.495979 \times 10^{11} m$$

$$1 parsec = 206,265 AU$$

$$= 3.085678 \times 10^{16} m$$

$$= 3.261633 light years$$

$$1 light year = 9.46053 \times 10^{15} m$$

$$c, or the speed of light = 2.997925 \times \frac{10^8 m}{s}$$

$$G, or the gravitational constant = (6.67 \times 10^{(-11)}) + (m^3/s^2)/kg$$

$$M_{\oplus} = 5.976 \times 10^{24} kg$$

$$R_{\oplus} = 6,378.164 km$$

$$M_{\odot} = 1.989 \times 10^{30} kg$$

$$R_{\odot} = 6.9599 \times 10^8 m$$

$$L_{\odot} = 3.826 \times 10^{26} kg$$

$$M of the Moon = 7.350 \times 10^{22} kg$$

$$R of the Moon = 1738 km$$

$$M of H atom = 1.67352 \times 10^{-27} kg$$

$$1 arc minute (1') = \frac{1}{60'}$$

$$1 Megaton = 1,000,000 of TNT = 4.5 \times 10^{15} J$$