This repository has been archived on 2022-06-22. You can view files and clone it, but cannot push or open issues or pull requests.
LaiNES/src/Blip_Buffer.cpp
2020-05-20 14:14:37 -05:00

399 lines
10 KiB
C++

// Blip_Buffer 0.3.3. http://www.slack.net/~ant/libs/
#include "Blip_Buffer.h"
#include <string.h>
#include <math.h>
/* Copyright (C) 2003-2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
Blip_Buffer::Blip_Buffer()
{
samples_per_sec = 44100;
buffer_ = NULL;
// try to cause assertion failure if buffer is used before these are set
clocks_per_sec = 0;
factor_ = ~0ul;
offset_ = 0;
buffer_size_ = 0;
length_ = 0;
bass_freq_ = 16;
}
void Blip_Buffer::clear( bool entire_buffer )
{
long count = (entire_buffer ? buffer_size_ : samples_avail());
offset_ = 0;
reader_accum = 0;
memset( buffer_, sample_offset & 0xFF, (count + widest_impulse_) * sizeof (buf_t_) );
}
blargg_err_t Blip_Buffer::sample_rate( long new_rate, int msec )
{
unsigned new_size = (UINT_MAX >> BLIP_BUFFER_ACCURACY) + 1 - widest_impulse_ - 64;
if ( msec != blip_default_length )
{
size_t s = (new_rate * (msec + 1) + 999) / 1000;
if ( s < new_size )
new_size = s;
else
require( false ); // requested buffer length exceeds limit
}
if ( buffer_size_ != new_size )
{
delete [] buffer_;
buffer_ = NULL; // allow for exception in allocation below
buffer_size_ = 0;
offset_ = 0;
buffer_ = BLARGG_NEW buf_t_ [new_size + widest_impulse_];
BLARGG_CHECK_ALLOC( buffer_ );
}
buffer_size_ = new_size;
length_ = new_size * 1000 / new_rate - 1;
if ( msec )
assert( length_ == msec ); // ensure length is same as that passed in
samples_per_sec = new_rate;
if ( clocks_per_sec )
clock_rate( clocks_per_sec ); // recalculate factor
bass_freq( bass_freq_ ); // recalculate shift
clear();
return blargg_success;
}
void Blip_Buffer::clock_rate( long cps )
{
clocks_per_sec = cps;
factor_ = (unsigned long) floor( (double) samples_per_sec / cps *
(1L << BLIP_BUFFER_ACCURACY) + 0.5 );
require( factor_ > 0 ); // clock_rate/sample_rate ratio is too large
}
Blip_Buffer::~Blip_Buffer()
{
delete [] buffer_;
}
void Blip_Buffer::bass_freq( int freq )
{
bass_freq_ = freq;
if ( freq == 0 ) {
bass_shift = 31; // 32 or greater invokes undefined behavior elsewhere
return;
}
bass_shift = 1 + (int) floor( 1.442695041 * log( 0.124 * samples_per_sec / freq ) );
if ( bass_shift < 0 )
bass_shift = 0;
if ( bass_shift > 24 )
bass_shift = 24;
}
long Blip_Buffer::count_samples( blip_time_t t ) const {
return (resampled_time( t ) >> BLIP_BUFFER_ACCURACY) - (offset_ >> BLIP_BUFFER_ACCURACY);
}
void Blip_Impulse_::init( blip_pair_t_* imps, int w, int r, int fb )
{
fine_bits = fb;
width = w;
impulses = (imp_t*) imps;
generate = true;
volume_unit_ = -1.0;
res = r;
buf = NULL;
impulse = &impulses [width * res * 2 * (fine_bits ? 2 : 1)];
offset = 0;
}
const int impulse_bits = 15;
const long impulse_amp = 1L << impulse_bits;
const long impulse_offset = impulse_amp / 2;
void Blip_Impulse_::scale_impulse( int unit, imp_t* imp_in ) const
{
long offset = ((long) unit << impulse_bits) - impulse_offset * unit +
(1 << (impulse_bits - 1));
imp_t* imp = imp_in;
imp_t* fimp = impulse;
for ( int n = res / 2 + 1; n--; )
{
int error = unit;
for ( int nn = width; nn--; )
{
long a = ((long) *fimp++ * unit + offset) >> impulse_bits;
error -= a - unit;
*imp++ = (imp_t) a;
}
// add error to middle
imp [-width / 2 - 1] += (imp_t) error;
}
if ( res > 2 ) {
// second half is mirror-image
const imp_t* rev = imp - width - 1;
for ( int nn = (res / 2 - 1) * width - 1; nn--; )
*imp++ = *--rev;
*imp++ = (imp_t) unit;
}
// copy to odd offset
*imp++ = (imp_t) unit;
memcpy( imp, imp_in, (res * width - 1) * sizeof *imp );
}
const int max_res = 1 << blip_res_bits_;
void Blip_Impulse_::fine_volume_unit()
{
// to do: find way of merging in-place without temporary buffer
imp_t temp [max_res * 2 * Blip_Buffer::widest_impulse_];
scale_impulse( (offset & 0xffff) << fine_bits, temp );
imp_t* imp2 = impulses + res * 2 * width;
scale_impulse( offset & 0xffff, imp2 );
// merge impulses
imp_t* imp = impulses;
imp_t* src2 = temp;
for ( int n = res / 2 * 2 * width; n--; ) {
*imp++ = *imp2++;
*imp++ = *imp2++;
*imp++ = *src2++;
*imp++ = *src2++;
}
}
void Blip_Impulse_::volume_unit( double new_unit )
{
if ( new_unit == volume_unit_ )
return;
if ( generate )
treble_eq( blip_eq_t( -8.87, 8800, 44100 ) );
volume_unit_ = new_unit;
offset = 0x10001 * (unsigned long) floor( volume_unit_ * 0x10000 + 0.5 );
if ( fine_bits )
fine_volume_unit();
else
scale_impulse( offset & 0xffff, impulses );
}
static const double pi = 3.1415926535897932384626433832795029L;
void Blip_Impulse_::treble_eq( const blip_eq_t& new_eq )
{
if ( !generate && new_eq.treble == eq.treble && new_eq.cutoff == eq.cutoff &&
new_eq.sample_rate == eq.sample_rate )
return; // already calculated with same parameters
generate = false;
eq = new_eq;
double treble = pow( 10.0, 1.0 / 20 * eq.treble ); // dB (-6dB = 0.50)
if ( treble < 0.000005 )
treble = 0.000005;
const double treble_freq = 22050.0; // treble level at 22 kHz harmonic
const double sample_rate = eq.sample_rate;
const double pt = treble_freq * 2 / sample_rate;
double cutoff = eq.cutoff * 2 / sample_rate;
if ( cutoff >= pt * 0.95 || cutoff >= 0.95 ) {
cutoff = 0.5;
treble = 1.0;
}
// DSF Synthesis (See T. Stilson & J. Smith (1996),
// Alias-free digital synthesis of classic analog waveforms)
// reduce adjacent impulse interference by using small part of wide impulse
const double n_harm = 4096;
const double rolloff = pow( treble, 1.0 / (n_harm * pt - n_harm * cutoff) );
const double rescale = 1.0 / pow( rolloff, n_harm * cutoff );
const double pow_a_n = rescale * pow( rolloff, n_harm );
const double pow_a_nc = rescale * pow( rolloff, n_harm * cutoff );
double total = 0.0;
const double to_angle = pi / 2 / n_harm / max_res;
float buf [max_res * (Blip_Buffer::widest_impulse_ - 2) / 2];
const int size = max_res * (width - 2) / 2;
for ( int i = size; i--; )
{
double angle = (i * 2 + 1) * to_angle;
// equivalent
//double y = dsf( angle, n_harm * cutoff, 1.0 );
//y -= rescale * dsf( angle, n_harm * cutoff, rolloff );
//y += rescale * dsf( angle, n_harm, rolloff );
const double cos_angle = cos( angle );
const double cos_nc_angle = cos( n_harm * cutoff * angle );
const double cos_nc1_angle = cos( (n_harm * cutoff - 1.0) * angle );
double b = 2.0 - 2.0 * cos_angle;
double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
double d = 1.0 + rolloff * (rolloff - 2.0 * cos_angle);
double c = pow_a_n * rolloff * cos( (n_harm - 1.0) * angle ) -
pow_a_n * cos( n_harm * angle ) -
pow_a_nc * rolloff * cos_nc1_angle +
pow_a_nc * cos_nc_angle;
// optimization of a / b + c / d
double y = (a * d + c * b) / (b * d);
// fixed window which affects wider impulses more
if ( width > 12 ) {
double window = cos( n_harm / 1.25 / Blip_Buffer::widest_impulse_ * angle );
y *= window * window;
}
total += (float) y;
buf [i] = (float) y;
}
// integrate runs of length 'max_res'
double factor = impulse_amp * 0.5 / total; // 0.5 accounts for other mirrored half
imp_t* imp = impulse;
const int step = max_res / res;
int offset = res > 1 ? max_res : max_res / 2;
for ( int n = res / 2 + 1; n--; offset -= step )
{
for ( int w = -width / 2; w < width / 2; w++ )
{
double sum = 0;
for ( int i = max_res; i--; )
{
int index = w * max_res + offset + i;
if ( index < 0 )
index = -index - 1;
if ( index < size )
sum += buf [index];
}
*imp++ = (imp_t) floor( sum * factor + (impulse_offset + 0.5) );
}
}
// rescale
double unit = volume_unit_;
if ( unit >= 0 ) {
volume_unit_ = -1;
volume_unit( unit );
}
}
void Blip_Buffer::remove_samples( long count )
{
require( buffer_ ); // sample rate must have been set
if ( !count ) // optimization
return;
remove_silence( count );
// Allows synthesis slightly past time passed to end_frame(), as long as it's
// not more than an output sample.
// to do: kind of hacky, could add run_until() which keeps track of extra synthesis
int const copy_extra = 1;
// copy remaining samples to beginning and clear old samples
long remain = samples_avail() + widest_impulse_ + copy_extra;
if ( count >= remain )
memmove( buffer_, buffer_ + count, remain * sizeof (buf_t_) );
else
memcpy( buffer_, buffer_ + count, remain * sizeof (buf_t_) );
memset( buffer_ + remain, sample_offset & 0xFF, count * sizeof (buf_t_) );
}
#include BLARGG_ENABLE_OPTIMIZER
long Blip_Buffer::read_samples( blip_sample_t* out, long max_samples, bool stereo )
{
require( buffer_ ); // sample rate must have been set
long count = samples_avail();
if ( count > max_samples )
count = max_samples;
if ( !count )
return 0; // optimization
int sample_offset = this->sample_offset;
int bass_shift = this->bass_shift;
buf_t_* buf = buffer_;
long accum = reader_accum;
if ( !stereo ) {
for ( long n = count; n--; ) {
long s = accum >> accum_fract;
accum -= accum >> bass_shift;
accum += (long (*buf++) - sample_offset) << accum_fract;
*out++ = (blip_sample_t) s;
// clamp sample
if ( (BOOST::int16_t) s != s )
out [-1] = blip_sample_t (0x7FFF - (s >> 24));
}
}
else {
for ( long n = count; n--; ) {
long s = accum >> accum_fract;
accum -= accum >> bass_shift;
accum += (long (*buf++) - sample_offset) << accum_fract;
*out = (blip_sample_t) s;
out += 2;
// clamp sample
if ( (BOOST::int16_t) s != s )
out [-2] = blip_sample_t (0x7FFF - (s >> 24));
}
}
reader_accum = accum;
remove_samples( count );
return count;
}
void Blip_Buffer::mix_samples( const blip_sample_t* in, long count )
{
buf_t_* buf = &buffer_ [(offset_ >> BLIP_BUFFER_ACCURACY) + (widest_impulse_ / 2 - 1)];
int prev = 0;
while ( count-- ) {
int s = *in++;
*buf += s - prev;
prev = s;
++buf;
}
*buf -= *--in;
}