The Ninth Grade Math Competition Class Modular Arithmetic Anthony Wang

1.	The remainders when two natural numbers are divided by 12 are 5 and 9. (a) Find the remainder
	when their product is divided by 12. (b) Find the reminder when their product is divided by 4.

2. Is $21^{100} - 12^{100}$ a multiple of 11?

3. Find the remainder when $24^{50} - 15^{50}$ is divided by 13.

4. Find the tens and units digits of 7^{2006} .

5. Find the remainder when $1^2 + 2^2 + 3^2 + \cdots + 99^2$ is divided by 13.

6. Find the remainder when $9^{42} - 5^{42}$ is divided by 7.

7. Find the remainder when 7^{255} is divided by 11.

Fermet's Little Theorem

$$7^{255} = 7^{25\cdot10} \cdot 7^5 = (7)^{25} 7^5 = 7^5 \text{ (mod)}$$

8. Find the last two digits of 99^{2005} .

 $qq^{2005} \mod 100 = -1 \pmod{100}$ $qq = -1 \pmod{100}$ $(-1)^{2005} = -1 \pmod{100}$

9. A natural number n, has a unit digit of A when expressed in base 12. Find the remainder when n^2 is divided by 6.

$$194 \text{ mod } 10 = 9$$
 $194 \text{ mod } 12 = 10$
 $194 \text$