The Ninth Grade Math Competition Class Unit Digit Anthony Wang

1. What is the units digit of $\left(133^{13}\right)^{3}$?

$$
\begin{aligned}
\left(133^{13}\right)^{3}=133^{13 \cdot 3} & =133^{39} \\
& \rightarrow 3^{39} \rightarrow 7
\end{aligned}
$$

2. Find the units digit of n given that $m \cdot n=21^{6}$ and m has a units digit of 7 .

$$
\begin{aligned}
& m \cdot n=21^{6} \rightarrow 1^{6}=1 \\
& m \cdot n \rightarrow 1 \\
& 7 \cdot n \rightarrow 1 \\
& 7 \cdot 1 \rightarrow 7 x \\
& 7 \cdot(3) \rightarrow 1 \\
& 7 \cdot 5 \rightarrow 5 \\
& 7 \cdot x \rightarrow 9 \\
& 7 \cdot 4 \rightarrow 3
\end{aligned}
$$

3. (a:) Find the units digit f the sum

$$
1!+2!+3!+\cdots+2006!\quad 1+2+6+4 \rightarrow 3
$$

(b:) Find the units digit of the above sum when it is expressed in base 7 .

$$
\begin{aligned}
& 1!=1 \\
& 2!=2 \\
& 3!=6 \\
& 4!\rightarrow 4 \\
& 5!\rightarrow 0 \cdot 5 \\
& 6!\rightarrow 64^{2} \cdot 6 \\
& 7!\rightarrow 0 \\
& 8!\rightarrow 0
\end{aligned}
$$

$4!\rightarrow 6$

$$
\begin{aligned}
1+2+6+3+1 & +6=1910 \\
& =27_{7}
\end{aligned}
$$

4. A positive two-digit integer is divisible by 9 and its units digit is n. What is the greatest possible value of n ?

$$
\begin{array}{r|rl}
& 0 \leq 1 \leq 9 \\
q & q(4) & v
\end{array}
$$

$$
\text { 5. Find the units digit of } \underbrace{2016}-\underbrace{2^{2016}} \text {. }
$$

$$
\begin{aligned}
& 2^{\prime}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4} \rightarrow 6 \\
& 2^{5} \rightarrow 2 \\
& 2^{6} \rightarrow 4 \\
& 2^{7} \rightarrow 8 \\
& 2^{8} \rightarrow 6 \\
& 2^{9} \rightarrow 2
\end{aligned}
$$

6. The cube of the 3-digit natural number $A 7 B$ is 108531333 . What is $A+B$?

$$
\begin{gathered}
A 7 B^{3}=108,531,333 \\
477{ }^{7}=108 \cdot 10^{6} \\
1^{3}=1 \quad A 77 \approx \sqrt[3]{108} \cdot 100 \\
3^{3} \rightarrow 7 \quad 4.100 \\
5^{3}+5 \quad A 77 \approx 480 \\
\begin{array}{c}
7^{5} \rightarrow 3 \\
9^{3} \rightarrow 9
\end{array} \quad 4
\end{gathered}
$$

7. How many of the positive divisors of 6^{2006} have a units digit of 6 ?
8. (a) Convert 1599 to base 16
(b) Find all possible units digits of perfect fourth powers when written in base 16 .
(c) Determine all non-negative integral soulations $\left(n_{1}, n_{2}, \ldots, n_{14}\right)$ if any, of the Diophantine equa-
ion.
$n_{1}^{4}+n_{2}^{4}+\cdots+n_{14}^{4}=1599$.
(A Diophantine equation is an equation in which only integer solutions are allowed.)
(a)

$$
1599=\underbrace{1600-1}_{16 \cdot 100}
$$

(b) $0^{4}=0 \quad 640_{16}-1=63 F_{16}$

$$
\begin{aligned}
1^{4} & =1 \\
2^{4} & =16 \rightarrow 0_{16} \\
3^{4} & =81 \rightarrow 1_{16} \\
(2 k)^{4} & =16 k^{4} \rightarrow 0_{16} \\
(2 k+1)^{4} & =16 k^{4}+32 k^{3}+24 k^{2}+8 k+1
\end{aligned}
$$

8. (a) Convert 1599 to base 16
(b) Find all possible units digits of perfect fourth powers when written in base 16.
(c) Determine all non-negative integral soulations $\left(n_{1}, n_{2}, \ldots, n_{14}\right)$ if any, of the Diophantine equal-
tion.
ion.

$$
n_{1}^{4}+n_{2}^{4}+\cdots+n_{14}^{4}=1599
$$

$$
\begin{array}{cccc}
n_{1}^{4}+n_{2}^{4}+\ldots & -n_{14}^{4} & =63 & F_{6} \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
& {[0,} & 14]
\end{array}
$$

