The Ninth Grade Math Competition Class **Unit Digit** Anthony Wang

1. What is the units digit of $(133^{13})^3$?

What is the units digit of $(133^{-6})^{-7}$ $(|33^{-6})^{-7} = (33^{-3}$

2. Find the units digit of n given that $m \cdot n = 21^6$ and m has a units digit of 7.

3. (a:) Find the units digit of the sum

$$\frac{1!+2!+3!+\dots+2006!}{1+2+6+4}$$

(b:) Find the units digit of the above sum when it is expressed in base 7.

$$\begin{aligned} |1| &= (& |1| = 0 \\ 2 & | = 2 & 2 & | = 0 \\ 3 & | = 2 & 3 & | = 0 \\ 4 & | = 4 & 3 & | = 0 \\ 4 & | = 74 & 3 & | = 26 \\ 4 & | = 724 & | = 26 \\ 4 & | = 724 & | = 26 \\ 4 & | = 724 & | = 26 \\ 5 & | = 76 & | = 26 \\ 5 & | = 76 & | = 26 \\ 7 &$$

4. A positive two-digit integer is divisible by n and its units digit is n. What is the greatest possible value of n?

 $O \leq n \leq q$ q(q)q

5. Find the units digit of $3^{2016} - 2^{2016}$.

$$2' = 2$$

$$2^{2} = 4$$

$$2^{3} = 8$$

$$2' = -76$$

$$2^{5} = 72$$

$$2^{6} = -74$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{7} = -76$$

$$2^{8} = -76$$

$$2^{8} = -76$$

$$2^{8} = -76$$

6. The cube of the 3-digit natural number A7B is 108531333. What is A + B?

 $A = B^{2} = 108, 531, 333$ 4 = 10 $A = B^{2} = 108, 531, 333$ 4 = 1 $B^{3} = 1$ $A = 108 \cdot 10^{6}$ $B^{3} = 1$ $A = 1^{2} = 3508 \cdot 100$ $B^{3} = 7$ $A = 7^{2} = 3508 \cdot 100$ $B^{3} = 7$ $A = 7^{2} = 480$ $B^{3} = 3^{2} = 3$ $A = 7^{2} = 480$ $B^{3} = 3^{2} = 3$ $B^{3} = 3^{2} = 3$

7. How many of the positive divisors of 6^{2006} have a units digit of 6?

- **8.** (a) Convert 1599 to base 16.
 - (b) Find all possible units digits of perfect fourth powers when written in base 16.
 - (c) Determine all non-negative integral solutions $(n_1, n_2, \ldots, n_{14})$ if any, of the Diophantine equation.

$$n_1^4 + n_2^4 + \dots + n_{14}^4 = 1599.$$

(A Diophantine equation is an equation in which only integer solutions are allowed.)

549 = 1600 - 1 $(\mathcal{U}$ 16 100 6416 $640_{16} - 1 = 63F_{16}$ $\left(b \right)$ $2^{4} = 16 = 0_{16}$ $3^{4} = 8(-) 1$ $\frac{(2k)^{4}}{(2k+1)^{4}} = \frac{16k^{4}}{16k^{8}} + \frac{32k^{3}}{12k^{4}} + \frac{24k^{2}}{16k^{8}} + \frac{32k^{3}}{16k^{8}} + \frac{24k^{2}}{16k^{8}} + \frac{32k^{3}}{16k^{8}} + \frac{32k^{3}}{16k^{$

8(3k2fk)

- **8.** (a) Convert 1599 to base 16
 - (b) Find all possible units digits of perfect fourth powers when written in base 16,
 - (c) Determine all non-negative integral soulations $(n_1, n_2, \ldots, n_{14})$ if any, of the Diophantine equation.

$$n_1^4 + n_2^4 + \dots + n_{14}^4 = 1599.$$

(A Diophantine equation is an equation in which only integer solutions are allowed.)

 $+ . - n_{14}^{4} = 63$ 4 4 1 2 4 () 6, 14