The Ninth Grade Math Competition Class Divisibility Rules Anthony Wang

1. What is the least number greater than 9000 that is divisible by 11 ?

$$
\begin{aligned}
& 9001 \text { is taos div. by } 11 ? \\
& 9002 \\
& 9001 \equiv-4+0-0+1 \equiv-9+1 \equiv-8(\bmod 11) \\
& 9002 \equiv-9+0-0+2 \equiv-9+2 \equiv-7(\bmod 11) \\
& 9003 \equiv-9+0-0+3 \equiv-9+3 \equiv-6(\bmod 19) \\
& 9000 \equiv-9+0-0+9 \equiv-9+9 \equiv 0(\bmod 11) \\
& 900 A \equiv-9+0-0+A \equiv-9+A \equiv 0(\bmod 11)
\end{aligned}
$$

2. Find A such that $3 A 6$ is a multiple of 9 .

$$
\begin{aligned}
3+A+6 & \equiv 0(\bmod 9) \\
A & \equiv 0(\bmod a) \\
A & =0,9
\end{aligned}
$$

3. Find the ordered pairs of digits (A, B) such that $67 A 7 B$ is a multiple of 225 .

$$
\begin{aligned}
& 225=3^{2} \cdot 5^{2} \\
& \text { check dive by } 25 \\
& 67 A 75 \\
& B=5 \\
& 6+7+A+7+5 \equiv 0(\bmod 9) \\
& 25+A \equiv 0(\bmod 9) \\
& A=2, B=5
\end{aligned}
$$

4. Find the value of the digit D if $47 D 4$ leaves a remainder of 2 when divided by 33 .

$$
\begin{gathered}
4702 \quad 33=3 \cdot 11 \\
-4+7-D+2 \equiv 5-D \equiv 0(\bmod 11) \\
D=5
\end{gathered}
$$

5. A four-digit number uses each of the digits $1,2,3$ and 4 exactly once. Find the probability that the number is a multiple of 4 .

42

6. Find the ordered pair of digits (M, N) such that $52 M N 5$ is a multiple of 1125.

7. For all integer values of $n \geq 2, k$ will divide $n^{3}-n$. What is the greatest possible integer value of k ?

$$
\begin{aligned}
& n^{3}-n=n\left(n^{2}-1\right) \\
&=n(n-1)(n+1) \\
& k(n(n-1)(n+1) \\
& k=2 \vee \\
& k=3 \sqrt{2} \\
& k=4 \times 4 \times 2 \cdot 1 \cdot 3=6 \\
& k=5 \times 4(9 \cdot 8 \cdot 10 \\
& k=6 \times 2
\end{aligned}
$$

$$
7,8,9
$$

$$
8,(9) 10
$$

8. The integer n is the smallest positive multiple of 15 such that every digit of n is either 0 or 8 . Compute $\frac{n}{15}$.

$$
\begin{aligned}
& 15=3.5 \\
& n=-8880 \\
& \frac{n}{15}=592
\end{aligned}
$$

