The Ninth Grade Math Competition Class

Logarithm Challenging Problems

Anthony Wang

0. What is the logarithm of $27 \sqrt[4]{9} \sqrt[3]{9}$ base 3 ?
1. Find x if $\log _{9}(2 x-7)=\frac{3}{2}$.
2. Find $\log _{\sqrt{3}} \sqrt[3]{9}$.
3. Solve the equation $\log _{2 x} 216=x$, where x is real.
4. Find base b such that $\log _{b} 5 \sqrt{5}=\frac{5}{2}$.
5. If $\log _{2} b-\log _{2} a=3$, then $b^{2}-a^{2}=M a^{2}$, compute M.
6. If $\frac{\log _{b} a}{\log _{c} a}=\frac{19}{99}, \frac{b}{c}=c^{k}$, find the value of k.
7. Let $T=1.8$, compute base b if $\log _{b}(75 T)=2+\log _{b} 3+\log _{b} 5$.
8. If $\log _{10} 14=x, \log _{10} 15=y$, and $\log _{10} 16=z$, then determne the number of elements in $S=$ $\left\{\log _{10} 1, \log _{10} 2, \log _{10} 3, \ldots, \log _{10} 100\right\}$ which can be written in the form $a x+b y+c z+d$ for rational numbers a, b, c, d.
9. Two of the vertices of a square are $A\left(\log _{15} 5,0\right)$ and $B\left(0, \log _{15} x\right)$, for $x>1$. The other two vertices lie in the first quadrant. Add the coordinates of all four vertices. The result is 8 . Compute x.
10. Given the points $A(\log 2, \log 3)$ and $B\left(\log \left(\log T^{2}\right), \log \left(\log T^{3}\right)\right)$, compute the slope of the line $\overleftrightarrow{A B}$.
11. The solutions to the system of equations: (2002 aime 1 \#6)

$$
\begin{aligned}
\log _{225} x+\log _{64} y & =4 \\
\log _{x} 225-\log _{y} 64 & =1
\end{aligned}
$$

are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Find $\log _{30}\left(x_{1} y_{1} x_{2} y_{2}\right)$.
12. For integers x and y with $1<x, y \leq 100$, compute the number of ordered pairs (x, y) such that $\log _{x} y+\log _{y} x^{2}=3$.

