The Ninth Grade Math Competition Class

Logarithm Challenging Problems

Anthony Wang

- **0.** What is the logarithm of $27\sqrt[4]{9}\sqrt[3]{9}$ base 3?
- 1. Find x if $\log_9(2x 7) = \frac{3}{2}$.
- **2.** Find $\log_{\sqrt{3}} \sqrt[3]{9}$.
- **3.** Solve the equation $\log_{2x} 216 = x$, where x is real.
- 4. Find base b such that $\log_b 5\sqrt{5} = \frac{5}{2}$.
- 5. If $\log_2 b \log_2 a = 3$, then $b^2 a^2 = Ma^2$, compute M.
- 6. If $\frac{\log_b a}{\log_c a} = \frac{19}{99}$, $\frac{b}{c} = c^k$, find the value of k.
- 7. Let T = 1.8, compute base b if $\log_b(75T) = 2 + \log_b 3 + \log_b 5$.
- 8. If $\log_{10} 14 = x$, $\log_{10} 15 = y$, and $\log_{10} 16 = z$, then determine the number of elements in $S = \{\log_{10} 1, \log_{10} 2, \log_{10} 3, \dots, \log_{10} 100\}$ which can be written in the form ax + by + cz + d for rational numbers a, b, c, d.
- 9. Two of the vertices of a square are $A(\log_{15} 5, 0)$ and $B(0, \log_{15} x)$, for x > 1. The other two vertices lie in the first quadrant. Add the coordinates of all four vertices. The result is 8. Compute x.
- 10. Given the points $A (\log 2, \log 3)$ and $B (\log(\log T^2), \log(\log T^3))$, compute the slope of the line \overleftrightarrow{AB} .
- 11. The solutions to the system of equations: (2002 aime 1 #6) $\log_{225} x + \log_{64} y = 4$

$$\log_x 225 - \log_y 64 = 1$$

are (x_1, y_1) and (x_2, y_2) . Find $\log_{30}(x_1y_1x_2y_2)$.

12. For integers x and y with $1 < x, y \le 100$, compute the number of ordered pairs (x, y) such that $\log_x y + \log_y x^2 = 3$.