The Ninth Grade Math Competition Class

Logarithm Challenging Problems

Anthony Wang

0. What is the logarithm of $27 \sqrt[4]{9} \sqrt[3]{9}$ base 3 ?
1. Find x if $\log _{9}(2 x-7)=\frac{3}{2}$.
2. Find $\log _{\sqrt{3}} \sqrt[3]{9}$.
3. Solve the equation $\log _{2 x} 216=x$, where x is real.
4. Find base b such that $\log _{b} 5 \sqrt{5}=\frac{5}{2}$.
5. If $\log _{2} b-\log _{2} a=3$, then $b^{2}-a^{2}=M a^{2}$, compute M.
6. If $\frac{\log _{b} a}{\log _{c} a}=\frac{19}{99}, \frac{b}{c}=c^{k}$, find the value of k.
7. Let $T=1.8$, compute base b if $\log _{b}(75 T)=2+\log _{b} 3+\log _{b} 5$.
8. If $\log _{225} x+\log _{x} 15=\frac{11}{6}$, find x.
9. Evaluate $\frac{1}{\log _{2} \frac{1}{6}}-\frac{1}{\log _{3} \frac{1}{6}}-\frac{1}{\log _{4} \frac{1}{6}}$
10. Compute the value of N for which $\frac{1}{\log _{2} 100}+\frac{1}{\log _{3} 100}+\frac{1}{\log _{6} 100}+\frac{1}{\log _{9} 100}=\frac{2}{\log _{N} 100}$.
11. Given the points $A(\log 2, \log 3)$ and $B\left(\log \left(\log T^{2}\right), \log \left(\log T^{3}\right)\right)$, compute the slope of the line $\overleftrightarrow{A B}$.
12. Given that $\log _{6} a+\log _{6} b+\log _{6} c=6$, and a, b, c are positive integers that form an increasing geometric sequence and $b-a$ is the square of an integer. Find $a+b+c$.
