The Ninth Grade Math Competition Class
Triangles: area and the three centers
Anthony Wang

1. In rectangle $A B C D, A B=5, B C \neq 3, F, G$ are on $C D$ such that $D F=1$ and $G Q=2, A F$ and $B G$ intersect at E. Find the area of $\triangle A E B$.

2. In the figure below, $A B C D$ has sides $A B=6, C D=8, B C=D A=2, A B\|C D, P Q\| A D$, $P R \| B C, A P=P B$. Find $\frac{P X}{Y R}$.

3. Rectangle $A B C D$, points F and G are on $A B$ such that $A F=F G=G B, E$ is midpoint of $D C$. $A C$ intersects $E F$ at H, and $E G$ at J. The area of rectangle $A B C D$ is 70 . Find the area of $\triangle A H F$.

4. $\triangle A B C$ has $A B=9, B C=12, C A=15$, find the length of the median $B D$.

5. Given $A B=B C=10, A C=12$, find the circumradius and inradius of $\triangle A B C$.

$$
\begin{aligned}
& \frac{10+10+6}{2} r=\operatorname{Arca}=48 \\
& 13 r=48 \quad r=\frac{48}{13} \\
&(8-x)^{2}+6^{2}=x^{2} \\
& 64-16 x+y^{2}+6^{2}=x^{2} \\
& 64+36=16 x \\
& 10=16 x\left(\frac{25}{4}\right) \text { circumadius }
\end{aligned}
$$

6. $A D$ bisects $\angle B A C, I$ is the incenter of $\triangle A B C, A B=7, B C=8, A C=11$, find $\frac{A I}{I D}$.
7. $\triangle A B C$, altitude $A D$ intersects angle bisector $B E$ at point X. If $\angle B A C=117^{\circ}, \angle A C B=35^{\circ}$, find $\angle D X E$.
8. Medians $A X$ and $B Y$ of triangle $A B C$ are perpendicular at point $O, A X=12, B C=10$, find $A O$, $B Y$ and median $C E$.
9. In $\triangle A B C, \angle C=90^{\circ}, M$ is the mid point of $B C, N$ is the mid point of $A C, O$ is the mid point of $M N$. Perimeter of $\triangle A B C$ is $112, O N=12.5$, find area of $M N A B$.
10. The circle in the above has radius 1 and is circumscribed about equilateral triangle $A B C$. If X is mid point of $A C, Y$ is on $\widehat{A C}$ such that $\angle Y X A=90^{\circ}$, what is $X Y$?
11. Point N is on hypotenuse $B C$ of right triangle $A B C$ such that $\angle C A N=45^{\circ}, A C=8, A B=6$, find $A N$.
12. For $\triangle A B C$, median $A D$ and $C E$ intersects at $P, P E=1.5, P D=2, D E=2.5$, find the area of $A E D C$.
13. For $\triangle A B C, A B=6, B C=10, A C=8, D$ is the mid point of $B C$, what is the sum of the radii of the circles inscribed in $\triangle A D B$ and $\triangle A D C$.
14. A triangle with sides of $5,12,13$ has both an inscribed and a circumscribed circle, what is the distance between the centers of those circles?
15. Find the area of $\triangle A B C$ with $A B=13, A C=14$, and $A B=15$.
16. $\triangle X O Y$ is a right triangle with $\angle X O Y=90^{\circ}, M, N$ are mid points of $O X$ and $O Y, X N=19$, $Y M=22$, find $X Y$.
17. Find the area of rhombus $A B C D$ given that the radii of the circles circumscribed around triangles $A B D$ and $A C D$ are 12.5 and 25 , respectively.
18. As shown in the figure, triangle $A B C$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle $A B C$.
19. In triangle $A B C, A B=13, B C=14, A C=15$, and point G is the intersection of the medians. Points A^{\prime}, B^{\prime}, and C^{\prime}, are the images of A, B, and C, respectively, after a 180° rotation about G. What is the area of the union of the two regions enclosed by the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$?
20. A point P is chosen in the interior of $\triangle A B C$ such that when lines are drawn through P parallel to the sides of $\triangle A B C$, the resulting smaller triangles t_{1}, t_{2}, and t_{3} in the figure, have areas 4,9 , and 49 , respectively. Find the area of $\triangle A B C$.
