The Ninth Grade Math Competition Class

Radical Expressions and Rationalizing Denominators Problems Anthony Wang

1. Find
$$\sqrt{9 + \sqrt{56}} - \sqrt{9 - \sqrt{56}}$$
.

$$5a+5b$$
 $5a-5b$
 $59+52-54-52$ = 252
 $59+56=545b$
 $4+56=45$
 $4-56=45$
 $4-56=45$
 $56=545$
 $14=ab$

2. Rationalize the denominator of $\frac{1}{2-\sqrt[3]{2}}$.

$$(a-b)(a^{2}+ab+b^{2}) = a^{3}-b^{3}$$

$$(a+b)(a^{2}-ab+b^{2}) = a^{3}+b^{3}$$

$$\frac{2^{2}+2^{3}\sqrt{2}+3\sqrt{4}}{2^{2}+2^{3}\sqrt{2}+3\sqrt{4}} = \frac{4+2^{3}\sqrt{2}+3\sqrt{4}}{8-2} = \frac{2}{3}+\frac{3\sqrt{2}}{3}+\frac{3\sqrt{4}}{6}$$

$$(a-b)(a^{2}+ab+b^{2}) = a^{3}-b^{3}$$

$$(a-b)(a^{2}+ab+b^{2}) = a^{3}-b^{3}$$

3. Rationalize the following denominator $\frac{8}{\sqrt{15}-\sqrt{7}}$.

 $\frac{8}{515-57} = \frac{8(515+57)}{515+57} = \frac{15-7}{5}$

4. In how many real values of x is $\sqrt{120 - \sqrt{x}}$ an integer?

 $\sqrt{120-5x} = k$ $120-5x = k^2 = 1$ $\sqrt{20-4^2} = 5x = 9$ $\sqrt{110}$ \sqrt

5. Let $a^2 = \frac{4}{11}$, $b^2 = \frac{(2+\sqrt{5})^2}{11}$, where a is a negative real number and b is a positive real number. If $(a+b)^3$ can be expressed in the simplified form (x,y), where x,y,z are positive integers. Find (x+y+z).

$$\alpha = -\frac{54}{11} = -\frac{2}{511}$$

$$(a+b)^{3} = (-\frac{2}{511} + \frac{2+5}{511})^{3} = (\frac{-2+2+5}{511})^{3}$$

$$=\left(\frac{-242+\sqrt{5}}{\sqrt{11}}\right)^{2}$$

b2= (2+U5)2

$$= \left(\frac{\sqrt{5}}{54}\right)^{3} = \frac{\sqrt{125}}{\sqrt{1331}}$$

$$= \frac{5\sqrt{5}}{1/\sqrt{11}} \frac{\sqrt{1}}{\sqrt{1}} = \frac{5\sqrt{5}}{121}$$

6. Rationalize the denominator of $\frac{1}{\sqrt[3]{2} + \sqrt[3]{16}}$.

tionalize the denominator of
$$\frac{1}{\sqrt[3]{2} + \sqrt[3]{16}}$$
.

$$\frac{1}{\sqrt[3]{2} + \sqrt[3]{3}} = \frac{1}{\sqrt[3]{2} + \sqrt[3]{3}} = \frac{3\sqrt[3]{2}}{\sqrt[3]{4}} = \frac{3\sqrt[3]{4}}{\sqrt[3]{4}} = \frac{$$

-6=2 \(9 \)

7. What is the product of the real roots of the equation $x^2 + 18x + 30 = 2\sqrt{x^2 + 18x + 45}$.

20

$$y-15=2\sqrt{\gamma}$$

$$y-13 = 20y$$

 $y^2 - 30y + 225 = 4y$
 $y^2 - 34y + 225 = 0$
 $(y-25)(y-9) = 0$

8. Determine the rational number $\frac{a}{b}$ in lowest terms that equal to

$$\frac{1}{\sqrt{2}+2} + \frac{1}{2\sqrt{3}+3\sqrt{2}} + \frac{1}{3\sqrt{4}+4\sqrt{3}} + \cdots + \frac{1}{(2013^2-1)\sqrt{2013^2}+2013^2\sqrt{2013^2}-1}}{\left(\frac{1}{2\sqrt{3}+3\sqrt{2}} + \frac{1}{3\sqrt{4}+4\sqrt{3}} + \cdots + \frac{1}{(2013^2-1)\sqrt{2013^2}+2013^2\sqrt{2013^2}-1}}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}} + \cdots + \frac{1}{(2\sqrt{3}+4\sqrt{3}+1)\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}} + \cdots + \frac{1}{(2\sqrt{3}+4\sqrt{3}+1)\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}} + \cdots + \frac{1}{(2\sqrt{3}+4\sqrt{3}+1)\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}} + \cdots + \frac{1}{(2\sqrt{3}+4\sqrt{3}+1)\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}}}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}+4\sqrt{3}}\right)}{\left(\frac{1}{2\sqrt{3}+4\sqrt{3}+$$