The Ninth Grade Math Competition Class Complex Numbers Anthony Wang

1. Suppose $(-3+8 i)(-3+A i)$ is a real number, find the value of A where A is real.

$$
(-3+8 i)(-3-8 i)=9+64=73
$$

2. Find all complex numbers whose squares equal $7-24 i$.

$$
\begin{gathered}
z^{2}=7-24 i \\
z=a+b i \\
(a+b i)^{2}=7-24 i \\
a^{2}+2 a b i+b_{i}^{2}-2=7-24 i \\
-1 \\
a^{2}-b^{2}+2 a b i
\end{gathered}=7-24 i
$$

3. Let $a=\frac{(2+i)^{2}}{3+i}$, find $1+\frac{1}{a}$.

$$
\begin{aligned}
& 1+\frac{3+i}{(2+i)^{2}}=1+\frac{3+i}{4+2 i-1}=1+\frac{3+i}{3+2 i}=\frac{3+2 i+3+i}{3+2 i} \\
& =\frac{6+3 i}{3+2 i} \frac{(3-2 i)}{(3-2 i)}=\frac{18+9 i-12 i+6}{9+4}=\frac{24-3 i}{13}
\end{aligned}
$$

4. Find all x such that $x^{5}=x^{3}$ (What if $x^{5}=x^{-3}$).

$$
\begin{aligned}
& x^{5}=x^{3} \\
& x^{5}-x^{3}=0 \\
& x^{3}\left(x^{2}-1\right)=0
\end{aligned}
$$

(0) or $\begin{aligned} & \left.b_{2}^{2}-1=0 \quad x^{2}=1 \quad x= \pm 1\right)\end{aligned}$

$$
\begin{aligned}
& x^{5}=x^{\frac{1}{-3}} \\
& x^{5}=\frac{1^{x^{3}}}{x^{3}}
\end{aligned}
$$

$$
\begin{array}{r}
a^{2}-b^{2}=0 \\
x^{2}=i=\frac{2}{2}-2 a b=1
\end{array}
$$

$$
a^{2}+2 a b i-b^{2}=i
$$

$$
x^{2}+1=0
$$

$$
x^{8}=1
$$

$$
x^{2}=-1 \quad x= \pm i
$$

$$
x^{8}-1=0
$$

$$
x^{4}+1=0
$$

$$
\left(x^{4}-1\right)\left(x^{4}+1\right)=0
$$

$$
\left(x^{2}\right)^{2}-(i)^{2}=0
$$

$$
\left(x^{2}-i\right)\left(x^{2}+i\right)=0
$$

$$
\begin{aligned}
& \left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)=0 \\
& (x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)=0
\end{aligned}
$$

$$
\begin{array}{ll}
\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)=0 & x^{2}=i \\
(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)=0 & x^{2}=-i
\end{array}
$$

5. If $x=\frac{1-\sqrt{3} i}{2}$, what is $\frac{1}{x^{2}-x}$.

$$
\begin{aligned}
& \frac{1}{x(x-1)}=\frac{1}{\left(\frac{1-\sqrt{3} i}{2}\right)\left(\frac{-1-\sqrt{3}}{2} i\right)}=-\frac{1}{4}+\frac{3}{4}=\frac{1}{-1}=-1 \\
& (a+b)(-a+b)=-a^{2}+b^{2} \\
& a=\frac{1}{2} \sqrt{3} i \\
& b=-\frac{\sqrt{2}}{2} i
\end{aligned}
$$

$$
v=a+b i=2+3 i
$$

6. Show that $\overline{w+z}=\bar{w}+\bar{z}$, and $\overline{w z}=\bar{w} \cdot \bar{z}$.

$$
\bar{w}=\overline{a+b i}=a-b i=2-3 i
$$

$$
\begin{aligned}
& w=a+b \text {. } \\
& z=c+d i \\
& \omega \bar{n}=(a+b i)(a-b i) \\
& =a^{2}+b^{2} \\
& \overline{a+b i+c+d i}=\overline{a+b i}+\overline{(+d i} \\
& a+c-(b+d) i=a-b i+c-d i \\
& \overline{(a+b i)(c+d i)}=(\overline{a+b i})(\overline{(-1 d i)} \\
& \overline{a c+b c i+a d i-b d}=(a-b i)(c-d i) \\
& a c-b d-(b c+a d) i=a c-b d-a d^{\prime} i-b c i
\end{aligned}
$$

7. Write $\sqrt{-16+30 i}$ as a complex number.

$$
\begin{aligned}
\sqrt{-16+30 i} & =a+b i \\
-16+30 i & =a^{2}-b^{2}+2 a b i \\
-16 & =a^{2}-b_{-5}^{2} \\
30 & =2 a b+5 i \\
35 & =-3-5 i \\
& -3-5
\end{aligned}
$$

8. A function f is defined on the complex numbers $b y f(z)=(a+b i) z$, where a and b are positive numbers. This function has the property that the infage of each poinzan the complex plane is equidistans from that point and the origin. Given that $|a+b i|=8$ and that $b^{2}=\frac{m}{n}$, where m and n are positive integers, Find $m+n$.

$$
f(z)=(a+b i) z
$$

$$
\begin{aligned}
b^{2}=8-a^{2} & =8-\left(\frac{1}{2}\right)^{2} \\
& =\left(\frac{255}{4}\right) \\
|u| v\rangle & =\mid u v)^{2}
\end{aligned}
$$

$$
\begin{aligned}
|f(z)| & =|f(z)-z| \\
\left|\left(a+b_{i}\right) z\right| & =|(a+b i) z-z| \\
\left.\mid a+b_{i}\right)|z| & =|a+b i-1||z| \\
(a+b i \mid & =|a+b i-1| \\
a^{2}+b^{2} & =(a-1)^{2}+b^{2} \\
a^{2} & =(a-1)^{2} \\
a & = \pm \mid a-1) \quad a=-a+1 a=\frac{1}{2} \\
a & =-(a-1) \quad a=1=1 a=1
\end{aligned}
$$

9. There is
find n.

$$
\begin{aligned}
& z=a+164 i \\
& \frac{a+164 i}{a+164 i+n}=4 i \\
& a+164 i=4 i(a+164 i+n) \\
& a+164 i=4 a i-656+4 n i \\
& a=-656 \\
& 164=4 a+4 n \\
& \frac{164-4 a}{4}=n \\
& 41-a=n \\
& 41+656=697
\end{aligned}
$$

$$
\begin{aligned}
& c=(a+b i)(a+b i)(a+b i)-107 i \\
& c=\left(a^{2}+2 a b i-b^{2}\right)(a+b i)-107 i \\
& c=a^{3}+2 a^{2} b i-a b^{2}+a^{2} b i \\
& -2 a b^{2}-b^{3} i-107 i \\
& c=\underbrace{3}-3 a b^{2}+3 a^{2} b i-b^{3} i-107 i \\
& c=a^{3}-3 a b^{2}=216-3 \cdot 6 \cdot 1^{2} \\
& c=198 \\
& 0=3 a^{2} b-b^{3}-107 \\
& 107=3 a^{2} b-b^{3} \\
& 167=\frac{b}{1}\left(3 a^{2}-b^{2}\right) \\
& 107 \\
& 10 a^{2}-1=107 \\
& a^{2}=\frac{108}{3}=36 \\
& 10=6
\end{aligned}
$$

