The Ninth Grade Math Competition Class Factorials and Palindrome Anthony Wang

1. What is the largest 4 -digit palindrome that is the sume of 2 different 3 -digit palindromes?

2. Find the largest n for which 12^{n} evenely divides 20!.

$$
\begin{array}{lll}
12^{n}=2^{2 n} \cdot 3^{n} \\
n \leq 8 \\
2 n \leq 18 \\
2^{1} & \frac{20}{2}=10 & 3^{1} \\
2^{2} & \frac{20}{3}=6 \\
2^{3} & \frac{5}{2}=5 & 3^{2} \\
2^{4} & \frac{6}{3}=2 \\
\frac{2}{2} & =1
\end{array}
$$

3. What is the first year after 2018 that is a palindrome?

$$
A B B A
$$

$$
2002
$$

4. What is the product of the largest 3 digit palindrome and the least 3 digit palindrome?

$$
999
$$

-

5. How many 5 -digit palindromes are there?

$$
\begin{aligned}
& A B C D E \\
& E D C B A \\
& 01210=1210 \\
& A B C B A \\
& \begin{array}{lll}
\hline & \overline{0} & \bar{O} \\
2 & 1 & !
\end{array} \\
& \begin{array}{l:l}
9 & 1 \\
& a
\end{array} \\
& 9 \cdot 10 \cdot 10=900
\end{aligned}
$$

6. Find the sum of all 3-digit plaindromes.

$$
\begin{aligned}
& 101,111,121,131, \ldots 99,989,999 \\
& 1100 \cdot \frac{A B A}{100}=49500
\end{aligned}
$$

7. Palindromic primes are numbers that are both palindromic and prime. Find the greatest 3-digit palindromic prime?

$$
\begin{aligned}
& 999=9.111 \\
& 3.333 \\
& 989=23.43 \\
& 974=11.89 \\
& 969=3.323 \\
& 959=7 \\
& 949=13.73 \\
& 939
\end{aligned}
$$

.
$10001,10101,10201, \ldots 99799,9989999999$
$S=110000 \cdot \frac{900}{2}=110000 \cdot 450=49500000$
8. A five-digit palindrome is a positive integer with respective digits $a b c b a$, where a is non-zero. Let S be the sum of all five-digit palindromes. What is the sum of the digits of S ?
9. \mathbf{h} There are unique integers $a_{2}, a_{3}, a_{4}, \ldots, a_{7}$ such that \qquad

$$
\frac{5}{7}=\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\frac{a_{4}}{4!}+\frac{a_{5}}{5!}+\frac{a_{6}}{6!}+\frac{a_{7}}{7!}
$$

$0 \leq a_{7}<7$
$1+1+1+4+1+2=(G)$

$$
\frac{5}{7}=\frac{a_{2}}{2}+\frac{a_{3}}{3 \cdot 2}+\frac{a_{4}}{4 \cdot 3 \cdot 2}+\frac{a_{5}}{\operatorname{s.4} 32}+\frac{a_{6}}{6 \cdot 5 \cdot 43.2}+\frac{a_{7}}{7664332}
$$

$$
\begin{aligned}
& 5 \cdot 615 \cdot 4 \cdot 32=716 \cdot 5 \cdot 4 \cdot 3 a_{2}+7 \cdot 6 \cdot 5 \cdot 4 a_{3}+7 \cdot 6 \cdot 5 a_{4}+7 \cdot 66_{5}+7 a_{6}+a_{7}
\end{aligned}
$$

$$
\begin{aligned}
& 3600=A=R_{a_{7}}^{7 B}+a_{7}
\end{aligned}
$$

$7 \sqrt{7} \frac{514 R 2}{3600}$

$$
\begin{aligned}
& 6.5 \cdot 4.3 a_{2}+6 \cdot 5.4 a_{3}+6.5 a_{4}+6 a_{5}+a_{a}=514 \\
& 6\left(5 \cdot 4 \cdot 3 a_{2}+5 \cdot 4 a_{3}+5 a_{4}+a_{5}\right)+a_{6}=514 \\
& 85 R 4 \\
& 6(514 \\
& 514.3 a_{2}+5.4 a_{3}+5 a_{4}+a_{5}=85 \\
& 5\left(4.3 a_{2}+4 a_{3}+a_{4}\right)+a_{5}=85
\end{aligned}
$$

$$
\begin{gathered}
41_{3} a_{2}+4 a_{3}+4_{4}=17 \\
4\left(3 a_{2}+a_{3}\right)+a_{4}=17 \\
3 a_{2}+a_{3}=4
\end{gathered}
$$

8. A five-digit palindrome is a positive integer with respective digits $a b c b a$, where a is non-zero. Let S be the sum of all five-digit palindromes. What is the sum of the digits of S ?
9. \mathbf{h} There are unique integers $a_{2}, a_{3}, a_{4}, \ldots, a_{7}$ such that

$$
\frac{5}{7}=\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\frac{a_{4}}{4!}+\frac{a_{5}}{5!}+\frac{a_{6}}{6!}+\frac{a_{7}}{7!},
$$

with $0 \leq a_{i} \leq i$, for $i=2,3, \ldots, 7$. Find $a_{2}+a_{3}+\ldots+a_{7}$.

