The Ninth Grade Math Competition Class Quadratic Equations and Vieta Anthony Wang

1. Let a and b denote the solutions of $18 x^{2}+3 x-28=0$, find the value of $(a-1)(b-1)$.

$$
\begin{aligned}
& a+b=-\frac{3}{18}=-\frac{1}{6} \\
& -a-b=\frac{1}{6}-\frac{-28}{18}=\frac{-14}{9} \\
& a b-\underbrace{\frac{a}{6}}_{-\frac{14}{4}} \underbrace{(a-1)(b-1)}=\frac{-14}{9}+\frac{1}{6}+1=-\frac{7}{18}
\end{aligned}
$$

$$
\begin{array}{ll}
a b=\frac{2}{1}=2 & (a+b)^{2}=m^{2} \\
a+b=-\frac{-m}{1}=m & a^{2}+b^{2}+2 a b=m^{2} \\
a^{2}+b^{2}=m^{2}-4
\end{array}
$$

2. Let a and b be the roots of the equation $x^{2}-m x+2=0$. Suppose that $a+\frac{1}{b}$ and $b+\frac{1}{a}$ are roots of the equation $x^{2}-p x+q=0$, find q.

$$
\begin{aligned}
\frac{9}{1}=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{a}\right) & =\underbrace{a b}_{2}+\frac{a}{b}+\frac{b}{a}+\frac{1}{a b} \\
& =\frac{5}{2}+\frac{a}{b}+\frac{b^{2}}{b^{2}-4} \\
& =\frac{5}{2}+\frac{\overbrace{}^{2}+b^{2}}{a b} \\
& =\frac{5}{2}+\frac{m^{2}-4}{2} \\
& =\frac{1}{2}+\frac{m^{2}}{2}
\end{aligned}
$$

3. Let p, q and r be constants. One sulution to the equation $(x-p)(x-q)=(r-p)(r-q)$ is $x=r$. Find the other solution in terms of p, q and r.

4. If m and n are the roots of $x^{2}+m x+n=0$, where $m \neq 0$ and $n \neq 0$, then what number does $m+n$ equal?

5. For what values of k does the equation $\frac{x-1}{x-2}=\frac{x-k}{x-6}$ have no solution for x ?

$$
{ }_{x ?}^{x ?}=2,6
$$

$$
\begin{aligned}
&(x-1)(x-6)=(x-2)(x-k) \\
& x^{2}-x-6 x+6=x^{2}-2 x-k x+2 k \\
&-5 x+k x=2 k-6 \\
& x=\frac{2 k-6}{-5+k} \\
&=7 k=5 \\
& \frac{2 k-6}{-5+k}=2 \quad 2 k-6=-10+3 k \\
& \frac{2 k-6}{-5+k}=0 \quad 2 k-6=-30+6 k \\
& 24=4 k=k=6
\end{aligned}
$$

6. Find all solutions to $2 w^{4}-5 w^{2}+2=0$.

$$
\begin{aligned}
& \begin{array}{l}
y=w^{2} \epsilon \\
2 y^{2}-5 y+2=0 \\
2 y-1)(y-2)=0 \\
y=\left(\frac{1}{2}, 2\right) \\
\frac{1}{2}=w^{2} \quad 2=w^{2} \\
w=\left(\pm \frac{1}{\sqrt{2}} \quad w= \pm \sqrt{2}\right.
\end{array}
\end{aligned}
$$

7. Find the value of $\sqrt{90+\sqrt{90+\sqrt{90+\cdots}}}$.

$$
x=\sqrt{90+\sqrt{90+\sqrt{90+\cdots}}} x
$$

$$
\begin{array}{ll}
x=\sqrt{90+x} \\
x^{2}=90+x & x^{2}-40 x=0 \\
& (x-10)(x+4)=0 \\
& x=(10)-4
\end{array}
$$

8. Let a and b be the roots of $x^{2}-3 x-1=0$. Try to solve the following problems without finding a and b, it will be easier that way, anyway.

- Find a quadratic equations whose roots are a^{2} and b^{2}.

$$
\begin{aligned}
& x^{2}+c x+d=0 \\
& \frac{c}{1}=-\left(a^{2}+b^{2}\right) \\
& \frac{d}{1}=a^{2} b^{2}=1
\end{aligned}
$$

- Compute $\frac{1}{a+1}+\frac{1}{b+1}$.

$$
\begin{aligned}
-\frac{-3}{1} & =a+b=3 \\
\frac{-1}{1} & =a b=-1
\end{aligned}
$$

$$
c=-\left(a^{2}+b^{2}\right)=-11
$$

$$
\begin{aligned}
& (a+b)^{2}=3^{2} \\
& a^{2}+2 a b+b^{2}=4 \\
& a^{2}+b^{2}=11
\end{aligned}
$$

$$
\frac{1}{a+1}+\frac{1}{b+1}=\frac{a+1+b+1}{\underbrace{(a+1)(b+1)}_{a b+a+b+1}}=\frac{3+2}{-1+3+1}=\left(\frac{5}{3}\right)
$$

9. For some integer a, the equation $1988 x^{2}+a x+8891=0$, and $8891 x^{2}+a x+1988=0$ share a common root. Find a

r,
10. The product of the roots of the quadratic $6 x^{2}+c x+4$ is 2 greater than the sum of the roots, and c is a constant. What is c ?

11. Let a, b, and c be the roots of $x^{3}-3 x^{2}+1$.

- Find a polynomial whose roots are $a+3, b+3$ and $c+3$.
- Find a polynomial whose roots are $\frac{1}{a+3}, \frac{1}{b+3}$, and $\frac{1}{c+3}$.
- Compute $\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}$.
- Find a polynomial whose roots are a^{2}, b^{2} and c^{2}.
- Find a recurrence relation for $x_{n}=a^{n}+b^{n}+c^{n}$, and use it to compute $a^{5}+b^{5}+c^{5}$.

