The Ninth Grade Math Competition Class Factorials
Anthony Wan
$(2 \cdot 2 \cdot 2)^{r}=\left(2^{3}\right)^{n}-2^{3 n}$

1. Find the largest integer value of n for which 8^{n} evenly divides 100 !.

$$
\begin{array}{ll}
8^{\prime} & \frac{100}{8}=12 \\
8^{2} & \frac{12}{8}=1
\end{array}
$$

$100!=100 \cdot 99$.
(4) 3 (2)

1

$$
2^{\prime \prime} \frac{12}{2}=6
$$

$$
2^{5} \frac{6}{2}=3
$$

$$
2^{6} \quad \frac{3}{2}=1
$$

$$
\frac{97}{3}=32
$$

2. Find the prime factorization of 10 !.

$$
\begin{aligned}
10! & =10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
& =2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7
\end{aligned}
$$

3. What is the product of the positive divisors of 7 !.

$$
\begin{aligned}
7! & =7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
& =2^{4} \cdot 3^{2} \cdot 5^{1} \cdot 7^{1} \\
7!30 & \frac{5 \cdot 3 \cdot 2 \cdot 2}{2}=30
\end{aligned}
$$

4. How many positive cubes divide $3!5!7$!.

$$
\begin{aligned}
& 3^{\prime}= 2^{\prime} \cdot 3^{\prime} \\
& 5^{\prime}= 2^{3} \cdot 3^{\prime} \cdot 5^{1} \\
& 7^{\prime}= 2^{4} \cdot 3^{2} \cdot 5^{\prime} \cdot 7^{1} \\
& 31,5^{\prime}, 7!= 2^{8^{4}} 3^{4} 5^{2} \cdot 7^{1} \\
& 2^{0} 3^{0} 5^{0} 7^{0} \\
& 2^{3} 3^{3} \\
& 2^{6} \\
& 3 \cdot 2 \cdot 11=6
\end{aligned}
$$

5. For how many positive integers n less than or equal to 24 is n ! evenly divible by $1+2+\cdots+n$?

$$
\begin{aligned}
& 1+2+\ldots+n-1+n=(n+1) \cdot \frac{n}{2} \\
& (1+4)+(2+n-1)+\cdots \\
& \left.\frac{n(n+1)}{2} \right\rvert\, n! \\
& n(n+1) \mid 2 n! \\
& n=6 \\
& 6 \cdot 7(2 \cdot 6!=2 \cdot 6 \cdot 5 \cdot 4, \cdot 3,211 \\
& n+1=2,3,5,7,11,13,17,19,23 \\
& 24-8=16
\end{aligned}
$$

7. Let P be the product of the first 100 positive odd integers. Find the largest integer k such that P is divisible by 3^{k}.

$$
P=1 \cdot 3 \cdot 5 \cdot 7 \cdots 199
$$

$$
\begin{aligned}
P & =\frac{200!}{2 \cdot 4 \cdot 6 \cdot 8 \cdots \cdots \cdot 200} \\
& =\frac{200!}{26 \cdot 2(2) \cdot 2 \cdot(3 \cdot 249 \cdots 2 \cdot(00)} \\
P & =\frac{200!}{100!\cdot 2^{100}}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{1} \frac{200}{3}=66 \\
& 3^{2} \frac{66}{3}=22 \\
& 3^{3} \frac{22}{3}=7 \\
& 3^{4} \frac{7}{3}=2
\end{aligned}
$$

$$
\begin{aligned}
& 3^{1} \frac{100}{3}=33 \\
& 3^{2} \frac{33}{3}=11 \\
& 3^{3} \frac{11}{3}=3 \\
& 3^{4} \frac{3}{3}=1 \\
& 3^{48}=44
\end{aligned}
$$

