The Ninth Grade Math Competition Class
Decimals
Anthony Wang

1. Convert repeating decimal $0 . \overline{3123}$ to fraction.

$$
\begin{aligned}
x=0 . \overline{3123} & =0.312331233123 \\
10000 x & =3123.31233123 \ldots \\
4999 x & =3123 \\
x & =\frac{3123}{9999}=-\frac{347}{1111}
\end{aligned}
$$

$$
\begin{aligned}
& 41=4 \cdot 3 \cdot 2 \cdot 1 \\
& 3!\equiv 3 \cdot 2 \cdot 1
\end{aligned}
$$

2. Compute $\frac{\mathbb{R 2}+3!}{3!+2!}$: Express your answer as a decimal to the nearest hundredth.

$$
\begin{gathered}
\frac{4 \cdot 3 \cdot 2 \cdot 1+3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1+2 \cdot 1}=\frac{24+6}{6+2}=\frac{30}{8} \\
=\frac{15}{4}=3 \frac{3}{4}=3.75
\end{gathered}
$$

3. What is the $4037^{\text {th }}$ digit following the decimal point in the expansion of $\frac{1}{111}$?

4. Evaluate the infinite geometric series
as a fraction and find the first 6 digits in it decimal expansion.

$$
\begin{aligned}
& 7_{x}=\frac{7^{1}}{100^{2}}+\frac{7^{2}}{100^{3}}+\frac{7^{3}}{1004} \\
& 100 \\
& \frac{93}{100} x=\frac{7^{4}}{100} \Rightarrow x=\frac{1}{43} \\
& .01 \\
& 10007 \\
& .00004943 \\
& .00000343
\end{aligned}
$$

5. Let S be the set of real numbers that can be represented as repeating decimals of the form $0 . \overline{a b c}=\frac{a b c}{9 a c}$
where a, b, c are distinct digits. Find the sum of the elements of S. where a, b, c are distinct digits. Find the sum of the elements of S.

$$
\begin{aligned}
& \frac{012}{994}+\frac{013}{999}+\frac{014}{499} \cdots+\frac{986}{999}+\frac{987}{999} \\
& \frac{999}{999} \\
& 10 \cdot 9 \cdot 8=720 \text { chokes for } a, b, c \\
& \frac{720}{2}=360
\end{aligned}
$$

6. The rational number r is the largest number less than 1 whose base- 7 expansion consists of two distinct digits, i.e., $r=0 . \overline{A B}$. Written as a reduced fraction, $r=\frac{p}{q}$, find $p+q$.

$$
\begin{aligned}
x & =. \overline{55} 7 \\
1007 x & =65.657 \\
667 x & =657 \\
x & =\frac{657}{667}=\frac{47}{48} \quad 47+48=95
\end{aligned}
$$

7. Express $0.72 \overline{45}$ as a common fraction.
8. Let p be a prime number other than 2 or 5 . What is the maximum possible number of digits in the repeating block of digits in $\frac{1}{p}$?
