The Ninth Grade Math Competition Class Decimals Anthony Wang

1. Convert repeating decimal $0.\overline{3123}$ to fraction.

X = 0,3123 = 0,31233 | 233| 233| 233| 23. 10000x = 3123, 31233| 23. 4999x = 3123 X = 3123 X = 3123 4999 = 111

$$41 = 4, 3 \cdot 2 \cdot 1$$

$$31 = 3 \cdot 2 \cdot 1$$

2. Compute $\frac{44+3!}{3!+2!}$ Express your answer as a decimal to the nearest hundredth.

$$\frac{4.3.2.1 + 3.2.1}{3.2.1 + 2.1} = \frac{24.66}{6.42} = \frac{36}{8}$$
$$= \frac{15}{4} = 3\frac{3}{4} = 3.75$$

3. What is the 4037th digit following the decimal point in the expansion of $\frac{1}{111}$? $\begin{array}{c}
9 \\
\overline{111} \\
\overline{9} \\
\overline{$

4. Evaluate the infinite geometric series

 $\chi = \left(\frac{7^0}{100} + \frac{7^1}{100^2} + \frac{7^2}{100^3}\right)$ as a fraction and find the first 6 digits in its decimal expansion. ZX= 4 2 9 3 100 00

. O 1 10007 10000343 100000343

5. Let S be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$, $\overline{=}$ $\overline{99}$ where a, b, c are distinct digits. Find the sum of the elements of S.

6. The rational number r is the largest number less than 1 whose base-7 expansion consists of two distinct digits, i.e., $r = 0.\overline{AB}$. Written as a reduced fraction, $r = \frac{p}{q}$, find p + q.

X= .657 $1007 \times = 65.657$ $667 \times = 657$ $X = \frac{657}{667} = \frac{47}{48}$

47+48=95

7. Express $0.72\overline{45}$ as a common fraction.

8. Let p be a prime number other than 2 or 5. What is the maximum possible number of digits in the repeating block of digits in $\frac{1}{p}$?