The Ninth Grade Math Competition Class
Prime Factorization 1
Anthony Wang

1. What is the smallest positive integer N such that the value $7+30 N$ is not a prime number?

$$
\begin{array}{ll}
N=1 & 7+30 N=37 \text { is prime } \\
N=2 & 7+30 N=67 \text { is prime } \\
N=3 & 7+30 N=97 \text { is prime } \\
N=4 & 7+30 N=127 \text { is prime } \\
N=5 & 7+30 N=157 \text { is pine } \\
N=6 & 7+30 N=187 \text { is not } \\
& 187=11.17
\end{array}
$$

2. The product of a set of positive integers is 140 . What is their least possible sum?

$$
\begin{array}{ll}
140=2 \cdot 70 & \Rightarrow 2+70=72 \\
140=2 \cdot 2 \cdot 35 & \Rightarrow 2+2+35=39 \\
140=2 \cdot 2 \cdot 5 \cdot 7 & \Rightarrow 2+2+5+7=16
\end{array}
$$

3. Find the greatest natural number that must be a divisor of any common multiple of 14,26 and 66 .

4. The product of any two of the possible integers 30,72 and N is divisible by the third. What is the smallest possible value of N ?

$$
2^{\prime \cdot 3^{\prime} \cdot 5^{\prime}} 2^{3} \cdot 3^{2}
$$

5. How many divisors of 5400 are not multiples of any perfect square greater than 1 ?

6. How many of positive divisors of 45000 themselves have exactly 12 positive divisor?

$$
\begin{aligned}
45000 & =45 \cdot 1000 \\
& =3^{2} \cdot 5 \cdot 2^{3} \cdot 5^{3} \\
& =2^{3} \cdot 3^{2} \cdot 5^{4}
\end{aligned}
$$

$$
\begin{aligned}
& d \mid 45000 \quad t(d)=12 \\
& 0 \quad d=p^{11} \quad 12 \\
& 0_{q} \quad d=p^{S} q \quad 6.2 \\
& \begin{array}{ll}
2 & q \\
2 & 2=(4) d=p^{3} \cdot q^{2}
\end{array} 4 \cdot 3 \\
& \begin{array}{lll}
p & q & r \\
3 \cdot & 2 \cdot 1=6 & d=p^{2} \cdot q^{\prime} \cdot r^{\prime} \quad 3.2 .2
\end{array} \\
& \frac{3 \cdot 2 \cdot 1}{2}=\frac{6}{2}=3 \quad 2 \cdot 3 \cdot 5 \\
& 2^{2} \cdot 5 \cdot 3^{1} \\
& 4+3=7
\end{aligned}
$$

7. If m has 10 positive divisors, n has 6 positive divisors, and $g c d(m, n)=1$, how many positive
divisors does $m n$ have?

$$
\begin{aligned}
f(m) t(n) & =t(m n) \\
10 \cdot 6 & =60
\end{aligned}
$$

8. If n has exactly 7 positive divisors, how many positive divisors does n^{2} have?

9. How many of the positive divisors of 168 are even?

$$
\begin{aligned}
& 168=2.84 \\
& =2 \cdot 2^{2} \cdot 3 \cdot 7 \\
& =2^{3} \cdot 3 \cdot 7 \\
& \frac{168}{2}=2^{2} \cdot 3 \cdot 7^{1} \quad(2+1)(1+1)(1+1)=12 \\
& d(168 \quad d \text { is even } \\
& d=\begin{array}{lll}
26 & 3^{0} & 5^{0} \\
2, & 3 & 5^{2} \\
2 & & \\
23
\end{array} \\
& 3 \cdot 2 \cdot 2=12
\end{aligned}
$$

10. Show that any positive perfect square has an odd number of positive divisors?

$$
\begin{aligned}
1^{2}=144= & 2^{4} \cdot 3^{2} \\
& \left(2^{4} \cdot 3^{2}\right)^{\frac{1}{2}}=2^{2} \cdot 3^{1} \\
n= & p_{1}^{2 c_{1}} p_{2}^{2 c_{2}} \cdots p_{k}^{2 c_{k}} \\
t(n)= & \left(2 c_{1}+1\right)\left(2 c_{2}+1\right) \cdots\left(2 c_{k}+1\right)
\end{aligned}
$$

