The Ninth Grade Math Competition Class Angles, Arcs, and Special Trianles Anthony Wang

1. In the figure, given that $\angle ABC = 60^{\circ}$, and $\angle BCD = 70^{\circ}$, find $\angle CBD$.

2. Find x such that $\angle APB = 2x$, $\angle ACD = x$ and $\stackrel{\frown}{BC} = x$.

3. A quadrilateral is said to be cyclic quadrilateral if a circle can be drawn that passes through all four of its vertices. Prove that if ABCD is a cycli quadrilateral, then $\angle A + \angle C = 180^{\circ}$. Such a quadrilateral is said to be inscribed in the circle.

base	areas of two adj es are on the sam er of the two ins	acent squares are line. What is scribed circles?	e 256 square in the number of	nches and 16 so inches in the l	uare inches, re	spectively, and t gment that joins	hei the

5. We are given points A, B, C, D in the plane such that AD=13, AB=BC=AC=CD=10, find $\angle ADB$.

6. Point Z is on side PR of $\triangle PQR$ such that $\angle PZQ = \angle PQZ$ and $\angle PQR - \angle PRQ = 42^\circ$, find $\angle RQZ$.

7. See the figure above and find the value of X	
--	--

8.	The length of a 72° of a circle is 15, what is the circumference of the circe?	

9.	Chord YZ of a circle with center O has length length of $\stackrel{\frown}{YZ}$.	th 12. The circumfo	erence of the circle	is 24π , find the

10. In $\triangle ABC$, AB=20, $\angle A=30^{\circ}$, $\angle C=45^{\circ}$, find BC.

11. $\stackrel{\frown}{AC}$ of circle O has length 12π , the circle has radius 18. Find AC.

12.	Three congruent isosceles trianglesare constructed with their bases on the sides of an equilateral triangle of side length 1. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle, what is the length of one of the two congruent sides of one of the isosceles triangles?

13. Equilateral triangle ABC has What is the area of $\triangle CDM$?	s side length 2, M is the midpoint of AC	C, and C is the midpoint of BD .

14.	Point X is on side CD of rectangle $ABCD$ such that BX and BD trisect $\angle ABC$. If $BX =$	$4\sqrt{3}$
	find XD .	

15. Side what	AB and AC of eq fraction of the are	uilateral triangle a of $\triangle ABC$ lies	ABC are tangeroutside the circle	nt to a circle at ple?	points B and C 1	espectively,

16.	Equilateral triangle DEF is inscribed in equilateral triangle ABC , such that $DEBC$. Find the ratio of the area of $\triangle DEF$ to the area of $\triangle ABC$.

17. $\triangle ABC$ has a right angle at $\angle C$. Points D and E are on AB as shown such that AD=AC and BE=BC. Find $\angle DCE$.