The Ninth Grade Math Competition Class Divisors
Anthony Wang

1. Find the product of the positive divisors of 2400 that are multiples of 6 .

$$
\begin{aligned}
2400 & =24 \cdot 100 \\
& =2^{3} \cdot 3^{1} \cdot 2^{2} \cdot 5^{2} \\
& =2^{5} \cdot 3^{1} \cdot 5^{2}
\end{aligned}
$$

$d \mid 240061 d$

$$
400=2^{4} \cdot 5^{2}
$$

e1400
bc 12400

$$
\begin{array}{r}
\text { product of dir. of } 400 \\
=400^{\frac{5}{2}}
\end{array}
$$

$$
\frac{400^{15} \cdot 6^{15}}{20^{15} 6^{15}}
$$

2. Find the product of the divisors of 3200 that are perfect squares.

$$
\begin{aligned}
& 3200=32 \cdot 100 \\
&=2^{5} \cdot 2^{2} \cdot 5^{2} \\
&=2^{7} \cdot 5^{2} \quad 2^{6} \cdot 5^{2} \\
& 2^{0} 5^{0} \\
& d^{2} / 3200 2^{2} 5^{2} \\
& d\left(\sqrt{2^{6} \cdot 5^{2}}\right.=402^{6} \\
& 40=2^{3} \cdot 5^{1} \\
& 40^{\frac{8}{2}}=40^{4} 8 \\
&\left(40^{4}\right)^{2}=40^{8}
\end{aligned}
$$

$$
\begin{aligned}
& 3!=3 \cdot 2 \cdot 1=6 \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
\end{aligned}
$$

4. How many positive cubes divide (3!) 5 !
$\begin{array}{llll}\text { (A) } 2 & \text { (B) } 3 & \text { (C) } 4 & \text { (D) } 5\end{array}$

$$
\begin{gathered}
n!=n \cdot(n-1)(n-2) \cdots \cdot 1 \\
3!=2^{1} \cdot 3^{1} \\
5^{\prime}=2^{3} \cdot 3^{1} \cdot 5^{1} \\
7^{\prime}=2^{4} \cdot 3^{2} \cdot 5^{1} \cdot 7^{1} \\
3!\cdot 5!\cdot 7!=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{1} \\
2^{0} 3^{0} 5^{0} 7^{0} \\
2^{3} 3^{3} \\
2^{6} \\
3 \cdot 2 \cdot 1 \cdot 1=6
\end{gathered}
$$

5. How many of positive divisors of 3200 are not multiples of any perfect square greater than 1 ?

four divisprs

$$
\begin{array}{r}
n=p^{3} \quad 1, p, p_{2} 2 s 0 p=2,3,5,7 \text { (4) } \\
\hline n=p^{1} 9 \quad 1, p, 9<00 \\
15,14,105 \\
p=2,3,5,7,11,13,17,19 \\
23,29,3,37,41,43,47 \\
15 \text { primes }<50 \\
4+105=109
\end{array}
$$

7. Jan is thinking of a positive integer. Her integer has exactly 16 positive divisors, two of which are 12 and 15 . What is Jan's number?

$$
\begin{aligned}
& n=P_{5}^{H} \\
& =p^{5} \cdot q^{\prime} \\
& 6.2 \\
& =p^{3} \cdot q^{2} \\
& 4.3-3 \cdot-9 \\
& =p^{2} \cdot q^{\prime \prime} \cdot r^{\prime} \\
& 2^{3} \cdot 3^{2}=72 \\
& 2^{3} \cdot 5^{2}=12 \alpha \\
& 3^{3} \cdot 2^{2}=70 x^{2} \\
& 2^{2} \cdot 3^{\prime} \cdot 5^{\prime} \\
& 2^{2} \cdot 3^{1} \cdot 7^{1} \\
& 2^{2} \cdot 3^{1} \cdot 11^{1}=732 \\
& 3^{2} \cdot 2^{1} \cdot 5^{1}=90
\end{aligned}
$$

9. Dentoe p_{k} be the $k^{\text {th }}$ prime number. Show that $p_{1} p_{2} \cdots p_{n}+1$ cannot be the perfect square of an integer.

$$
\begin{aligned}
& p_{1} p_{2} p_{3} \cdots p_{n}+1=a^{2} \\
& p_{1} p \not 2 p_{3} \cdots p_{n}=a^{2}-1=(a+1+1(a+1) \\
& 2^{2} \cdot 3,5 \cdots p_{n}
\end{aligned}
$$

10. Prove that it is impossible for three consecutive squares to sum to another perfect squares.

$$
\begin{aligned}
& x^{2}+(x+1)^{2}+(x+2)^{2} \\
& (x-1)^{2}+x^{2}+(x+1)^{2} \\
& x^{2}+2 x+1+x^{2}+x^{2}+2 x+1 \\
& =3 x^{2}+2=a^{2}=14 k^{2} \\
& \lambda^{1} \\
& (3 x+1)^{2}=9 k^{2} \\
& =+3 k+1 \\
& (+3 \times+2)^{2}=9 k^{2} \\
& +6 k+4 \\
& \\
& \\
&
\end{aligned}
$$

11. A positive integer n is nice if there is a positive integer m with exactly four positive divisors (including 1 and m) such that the sum of the four divisors is equal to n. How many numbers in the set $\{2010,2011,2012, \cdots, 2019\}$ are nice?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5 .
$n=1+p+p^{2}+p^{3}$

$$
\begin{aligned}
& 1+13+13^{2}+13^{3}>2100 \\
& m=p^{3} \\
& m=p^{\prime} q^{\prime} \\
& n=1+p+q+p q=(1+p)(1+q) \\
& \text { cases } \\
& p=2 \\
& 2010=3.670 x \\
& 3(1+9)=2016=3.671 X \\
& \text { case } 2 \\
& (1+p)(1+9)=2016)=41504 \mathrm{~V}
\end{aligned}
$$

