The Ninth Grade Math Competition Class

Congruent, Similar and Right Triangles

Anthony Wang

1. *CD* is the altitude from right angle $\angle ACB$ of right triangle ABC, show that $CD^2 = AD.BD$ and $AC^2 = AD.AB$. $CD^2 = AP \cdot BP$ $CD^2 = AP \cdot BP$ $CD^2 = AP \cdot BP$ **2.** If $\triangle ABC \sim \triangle XYZ$, $\frac{AB}{XY} = 4$, and [ABC] = 64, find [XYZ].

3. Suppose $\angle ACQ = \angle QCB$, $AQ \perp CQ$, P is the midpoint of AB, show that $PQ \parallel BC$.

APG~JABD ß \mathcal{D} X

4. $PQ = PR, ZX \parallel QY, X$ is on PR, Z is on the extended line of $RQ, QY \perp PR$, and PQ is extended to W such that $WZ \perp PW$, show that $\triangle QWZ \sim \triangle RXZ$, and YQ = ZX - ZW.

 $\frac{x}{z} = \frac{a+b}{b}$ $\frac{y}{z} = \frac{a+b}{a+b}$ b Z

$$X = \frac{1}{a+b}$$

$$\frac{x}{5} + \frac{x}{5} = 1$$

7. TAPZ has $TZ \parallel AP \parallel ER$, and R, E are midpoints of AT and PZ respectively, TP and AZ intersect at point O. If AP = 64, TZ = 28, AZ = 46, find OI.

8. AB is divided at C such that AC = 3CB. Circles are drawn with AC, CB as diameters and a common tangent to these circles meets AB extended at D. Show that BD equals the radius of the smaller circle.

50

3 x = X + S'r 2x = 2r x = r x = r

9. Segments AD and BE are medians of right triangle ABC and AB is its hypotenuse. If a right triangle is constructed with legs AD and BE, what will be the length of its hypotenuse in terms of AB?

Aß Cx2+5Y2 x2+4,2=25x2+4 Ъ x27442

10. Let *ABC* be an equilateral triangle and points *F*, *Q*, *N* satisfy $\underline{AF} = QB = NC = 2AB/3$. Prove that $\angle AFQ$, $\angle NQB$, $\angle FNC$ are all 90° and *FQN* is an equilateral triangle.

11. The area of a given triangle is equal to the product of an altitude and the median toward the same side. Prove that the triangle is right angled.

12. A right-angled triangle ABC is given in which F is the midpoint of the hypotenuse AB and BC = 3AC. Let D, E divide the side BC in 3 equal segments. Prove $\triangle DFE$ is isosceles and right angled.

ABGF~1 BCA

13. Let *M* be the midpoint of side *AB* of equilateral triangle *ABC*, let *N*, *S*, *K* divide BC into four equal segments. *P* is midpoint of *CM*, show that $\angle MNB = \angle KPN = 90^{\circ}$.

20 30 (1) 160 X Z