The Ninth Grade Math Competition Class
Congruent, Similar and Right Triangles
Anthony Wang

1. $C D$ is the altitude from right angle $\angle A C B$ of right triangle $A B C$, show that $C D^{2}=A D \cdot B D$ and $A C^{2}=A D . A B$.

$$
\begin{aligned}
& C D^{2}=A D \cdot B D \\
& \frac{C D}{B D}=\frac{A P}{C D}
\end{aligned}
$$

2. If $\triangle A B C \sim \triangle X Y Z, \frac{A B}{X Y}=4$, and $[A B C]=64$, find $[X Y Z]$.

3. Suppose $\angle A C Q=\angle Q C B, A Q \perp C Q, P$ is the midpoint of $A B$, show that $P Q \| B C$.

4. $P Q=P R, Z X \| Q Y, X$ is on $P R, Z$ is on the extended line of $R Q, Q Y \perp P R$, and $P Q$ is extended to W such that $W Z \perp P W$, show that $\triangle Q W Z \sim \triangle R X Z$, and $Y Q=Z X-Z W$.

5. $P A$ and $B Q$ bisect angles $\angle R P Q$ and $\angle R Q P$. Given $R X \perp P A, R Y \perp B Q$, show $X Y \| P Q$.

6. Show that if $A B\|C D\| E F$, then $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ in the diagram.

7. $T A P Z$ has $T Z\|A P\| E R$, and R, E are midpoints of $A T$ and $P Z$ respectively, $T P$ and $A Z$ intersect at point O. If $A P=64, T Z=28, A Z=46$, find $O I$.

8. $A B$ is divided at C such that $A C=3 C B$. Circles are drawn with $A C, C B$ as diameters and a common tangent to these circles meets $A B$ extended at D. Show that $B D$ equals the radius of the smaller circle.

9. Segments $A D$ and $B E$ are medians of right triangle $A B C$ and $A B$ is its hypotenuse. If a right triangle is constructed with legs $A D$ and $B E$, what will be the length of its hypotenuse in terms of $A B$?

10. Let $A B C$ be an equilateral triangle and points F, Q, N satisfy $A F=Q B=N C=2 A B / 3$. Prove that $\angle A F Q, \angle N Q B, \angle F N C$ are all 90° and $F Q N$ is an equilateral triangle.

11. The area of a a given triangle is equal to the product of an altitude and the median toward the same side. Prove that the triangle is right angled.

12. A right-angled triangle $A B C$ is given in which F is the midpoint of the hypotenuse $A B$ and $B C=$ $3 A C$. Let D, E divide the side $B C$ in 3 equal segments. Prove $\triangle D F E$ is isosceles and right angled.

13. Let M be the midpoint of side $A B$ of equilateral triangle $A B C$, let N, S, K divide BC into four equal segments. P is midpoint of $C M$, show that $\angle M N B=\angle K P N=90^{\circ}$.

