## The Ninth Grade Math Competition Class Factorization Anthony Wang

**1.** Two non-zero real numbers, a and b, satisfy ab = a - b. Find all possible values of  $\frac{a}{b} + \frac{b}{a} - ab$ .

| <b>2.</b> Without a calculator, find the sum of the digits of the number $2003^4 - 1997^4$ . |  |
|----------------------------------------------------------------------------------------------|--|
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |

3. Express  $2^{22} + 1$  as the product of two four-digit numbers.

| <b>4.</b> Find the length and the wi | dth of a rectangle wi | th integer sides whose | area is equal to its perimeter. |
|--------------------------------------|-----------------------|------------------------|---------------------------------|
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |
|                                      |                       |                        |                                 |

| 5. Two different prime numbers between 4 and 18 are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained? |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |
|                                                                                                                                                                |

(A) 21 (B) 60 (C) 119 (D) 180 (E) 231

**6.** m, n are integers such that  $m^2 + 3m^2n^2 = 30n^2 + 517$ . Find  $3m^2n^2$ .

| 7. How many distinct ordered pairs of positive integers $(m, n)$ are there so that the sum of the reciprocal of $m$ and $n$ is $\frac{1}{4}$ ? |
|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |

**8.** Find all prime factors of  $3^{18} - 2^{18}$ 

**9.** An  $m \times n \times p$  rectangular box has half the volume of an  $(m+2) \times (n+2) \times (p+2)$  rectangular box, where m, n, and p are integers, and  $m \le n \le p$ . What is the largest possible value of p?

| 10. | How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to 3 times their perimeters? |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |
|     |                                                                                                                                             |

11. The integer N is positive. There are exactly 2005 pairs (x,y) of positive integers satisfying:

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{N}$$

Prove that N is a perfect square.