The Ninth Grade Math Competition Class Quadratic Formula and Polynomial Anthony Wang $\frac{1}{2} \frac{3}{2}+\frac{1}{2}=2$

1. Find the value of x if x is positive and $x^{2} 1$ is the reciprocal of $x+\frac{1^{2}}{2}$.

$$
\begin{aligned}
& \frac{1}{x-1}=x+\frac{1}{2} \\
& 1=\left(x+\frac{1}{2}\right)(x-1) \\
& 1=x^{2}+\frac{1}{2} x-x-\frac{1}{2} \\
& 2=2 x^{2}+x-2 x-1 \\
& 0=2 x^{2}-x-3 \\
& 0=(2 x-3)(x+1) \\
& x=-1\left(\frac{3}{2}\right)
\end{aligned}
$$

2. It is given that one root of $2 x^{2}+r x+s=0$, with r and s real numbers, is $3+2 i$. Find s.

$$
\begin{aligned}
& (3+2 i)(3-2 i)=\frac{5}{2}^{3-2 i} \\
& 2(3+2 i)(3-2 i)=5 \\
& 2(9+4)=26=5
\end{aligned}
$$

3. Find all values of k such that $x^{2}+k x+27=0$ has two distinct real solutions for x.

$$
\begin{aligned}
& b^{2}-4 c k>0 \\
& k^{2}-4 \cdot 1.27>0 \\
& k^{2}>108 \\
& \begin{array}{l}
k>6 \sqrt{3} \\
k<-6 \sqrt{3}
\end{array}
\end{aligned}
$$

4. Find all real solutions to $\left(x^{2}-5 x+5\right)^{x^{2}-9 x+20}=1$.

$$
\begin{gathered}
a^{b}=1 \\
1^{b}=1 \\
(-1)^{b^{c}}=1 \\
a^{0}=1 \\
x^{2}-5 x+5=1 \\
x^{2}-5 y+4=0 \\
\left.\left(y^{2}-1\right)(x-1)=0 \quad x=1,4\right) \\
x^{2}-5 x+5=1 \\
x^{2}-5 x+6=0 \\
(x-3)(x-2)=0 \\
x^{2}-9 x+20=0 \\
(x-4)(x-5)=0 \\
y=4,5
\end{gathered}
$$

5. Find all real solutions (x, y) of the system $x^{2}+y=\underbrace{12}+x$.

$$
\begin{aligned}
& x^{2}+y=y^{2}+x \\
& x^{2}+y-1 y^{2}-x=0 \\
& (x-y)(x+y)-(x-y)=0 \\
& (x-y)(x+y-1)=c \\
& x-4=0 \quad x^{2}+x=12 \\
& x^{2}+x-12=0 \\
& (x+4)(x-3)=0 \\
& \begin{array}{c}
y=-4 \\
y=-4
\end{array} \begin{array}{l}
x=3 \\
y=3
\end{array} \\
& x+y-1=0 \quad x^{2}+1-x=12 \\
& y=1-x \quad x^{2}-x-11=0 \\
& x=\frac{1 \pm \sqrt{1+44}}{2}=\frac{1 \pm 3 \sqrt{5}}{2} \\
& x=\frac{1+3 \sqrt{5}}{2} \quad y=\frac{1-35}{2} \\
& x=\frac{1-3 \sqrt{5}}{2} \quad y=\frac{1-3 \sqrt{5}}{2}
\end{aligned}
$$

6. Find all values of m for which the zeros of $2 x^{2}-m x-8$ differ by $m-1$.

$$
\begin{aligned}
& x=\frac{m \pm \sqrt{m^{2}-64}}{4} \\
& \frac{m+\sqrt{m^{2}-64}}{1}-\frac{m \sqrt{m^{2}-64}}{4}=\frac{\sqrt{m^{2}-64}}{2}=m-1 \\
& \frac{m^{2}-64}{4}=m^{2}-2 m+1 \\
& m^{2}-64=4 m^{2}-8 m+4 \\
& 0=3 m^{2}-8 m-60 \\
& 0=(3 m+10)(m-6) \\
& m=6,-\frac{10}{3}
\end{aligned}
$$

7. A polynomial of degree four with leading coefficient 1 and integer coefficients has two zeros, both of which are integers. Which of the following can also be a zero of the polynomial?

(B) $\frac{1+i}{2}$
$(C) \frac{1}{2}+i$
(D) $1+\frac{i}{2}$
$(E) \frac{1+i \sqrt{13}}{2}$

$$
\begin{gathered}
(x-r)(x-s)(x-t)(x-a) \\
(x-r)(x-s)=x^{2}+a y+b \\
r+s=-a \\
r=b \\
\frac{1+i \sqrt{11}}{2} \frac{1-i \sqrt{11}}{2} \\
\frac{1+11}{4}=3 \\
\frac{1+i}{2}=\frac{1-i}{2} \\
\frac{1+1}{4}=\frac{1}{2}
\end{gathered}
$$

8. Find the sum of all the roots of the equation $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.

$$
\begin{gathered}
2001 \\
x^{2001}+\left(\frac{1}{2}-a\right)^{2001} \text { des-2000 polyocnilal }=0 \\
\left(\frac{1}{2}-a\right)^{2001}+a^{2001}=0 \\
\frac{1}{2}-\left(\frac{1}{2}-a\right)
\end{gathered}
$$

$$
f(1)=1^{4}+a+b+c
$$

9. Three of the roots of $x^{4}+a x^{2}+b x+c=0$ are $-2,-3,5$. Find the value of $a+b+c$.

$$
\begin{gathered}
\frac{0}{1}=r-2-3+5 \\
0=r-2-3+5 \\
r=0 \\
f(x)=x(x+2)(x+3)(x-5)=0 \\
f(1)=1(3)(4)(-4)=-48=1+a+b+c \\
a+b+c=(-49
\end{gathered}
$$

$$
\begin{gathered}
a x^{2}+b x+c=0 \text { rs } \\
r+s=-\frac{b}{a} \\
1 s=\frac{c}{a}
\end{gathered}
$$

10. One root of the quadratic $x^{2}+b x+c=0$ is $1-3 i$. If b and c are real numbers, then what are b and c ?

$$
\begin{aligned}
& 1+3 i \\
&(x-1) 3 i)(x-1)+3 i)=(x-1)^{2}+9 \\
&=x^{2}-2 x+1+9 \\
&=x^{2}-2 x+10 \\
&-b=1-3 i+1+3 i==(2) \\
& 1=(1-3 i)(1+3 i)=1+4=10
\end{aligned}
$$

$$
\begin{gathered}
a+b+c=-3 \\
f(x)=-3)=-27+27-12-11=-23
\end{gathered}
$$

11. Suppose the roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b and c, and the roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$, find the value of t.

$$
\begin{aligned}
& -t=(a+b)(b+c)(c+a) \quad a+b+c \\
& -t=(-3-c)(-3-a)(-3-b) \\
& t=-(-3-c)(-3-a)(-3-b)=-f(-3)=23 \\
& f(x)=(x-c)(x-a)(x-b)
\end{aligned}
$$

$$
\begin{array}{ll}
f(x)= & f(a)=c \\
\text { cots of } x^{3}-3 x^{2}+1 . & f(b)=0
\end{array}
$$

12. Let a, b, and c be the roots of $x^{3}-3 x^{2}+1$.

- Find a polynomial whose roots are $a+3, b+3$ fCC) $=0$
- Find i al 1,1 and $c+3$.
- Compute $\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}=\frac{45}{53} h(x)^{a+3}, \frac{1}{b+3}$, and $\frac{1}{c+3}$

$$
n\left(\frac{1}{a+3}\right)=h\left(\frac{1}{b+3}\right)=h\left(\frac{1}{c+3}\right)^{\text {- Find a polynomial whose roots are } a^{2}, b^{2}}=C^{\text {and }} c^{2} \text {. }
$$

$$
h(x)=g\left(\frac{1}{x}\right)
$$

$$
h\left(\frac{1}{a+3}\right)=9(a+3)=0
$$

$$
\begin{gathered}
g(x) \quad g(a+3)=0 \\
g(b+3)=0 \\
g(c+3)=0 \\
g(x)=f(x-3) \\
g(a+3)=f(a+3-3)=f(6) \\
g(x)=(x-3)^{3}-3(x-3)^{2}+1 \\
=x^{3}-12 x^{2}+45 x-33
\end{gathered}
$$

- Find a polynomial whose roots are a^{2}, b^{2} and c^{2}. $l(x)$

$$
h(x)=\frac{1}{x^{3}}-\frac{12}{x^{2}}+\frac{45}{x}-53
$$

$$
x^{3} h(x)=\left(-53 x^{3}+45 x^{2}-12 x+1\right)
$$

$$
l\left(a^{2}\right)=l\left(b^{2}\right)=l\left(c^{2}\right)=C
$$

$$
l(x)=f(\sqrt{x})
$$

$$
l\left(a^{2}\right)=f\left(\sqrt{a^{2}}\right)=f(a)=0
$$

$$
A(x)=x^{\frac{3}{2}}-3 x+1=x^{\frac{3}{2}}-(3 x-1)
$$

$$
\left(x^{\frac{3}{2}}+(3 x+1)\right) P(x)=\left(\frac{\left.x^{\frac{3}{2}}-(3 x-1)\right)\left(x^{\frac{3}{2}}+(3 x-1)\right)}{3-9 x^{2}+1 x-1}\right.
$$

$$
=\left(x^{3}-9 x^{2}+6 x-1\right.
$$

$$
x=r_{1}, r_{2}, r_{3} \quad r_{1}+r_{2}+r_{3}
$$

13. The equation $\left.2^{(333 x}\right)^{2}+2(11)+2=2229+1+1$ has three real roots. Find their sum.

$$
\begin{gathered}
2^{-2} 2^{333 x} \\
\left.\frac{1}{4} 2^{333 x}\right) \\
\left.\frac{4}{4} \sqrt[2^{111 x}]{y^{3}}+2 \cdot 2^{222 x}\right) \\
\frac{y^{2}}{4}+1 \\
y^{3}-8 y^{2}+16 y-4=0 \\
5152 y^{2}+1
\end{gathered}
$$

$$
\frac{1}{4} \frac{\left.2^{333 x}\right)}{y}+\frac{4 \sqrt{211 x})}{y^{2}}=2 \cdot 2^{222 x}+1 \quad \begin{aligned}
& y=2^{11 x} \\
& 105, y=11
\end{aligned}
$$

$$
\begin{aligned}
& y=2^{111 x} \\
& 10 g_{2} y=111 x \\
& \frac{10924}{111}=x \\
& \frac{10924}{111}=r_{1}, 1213 \\
& \frac{10 g_{2} 51}{111}+\frac{\log _{2} 52}{111}+\frac{5_{5} 53}{11} \\
& \frac{1}{111}\left(\frac{1092}{} 515_{2} 53\right) \\
& \frac{(10924)}{111}=\left(\frac{5_{2}}{111}\right)
\end{aligned}
$$

14. If $P(x)$ is a polynomial in x such that for all $x, x^{23}+23 x^{17}-18 x^{16}-24 x^{15}+108 x^{14}=\left(x^{4}-3 x^{2}-\right.$ $2 x+9) \cdot P(x)$, compute the sum of coefficients of $P(x)$.

$$
\begin{gathered}
1+23-18-24+108=(1-3-2+9) P(1) \\
P(1)=18
\end{gathered}
$$

15. The real number x satisfies the equation $x+\frac{1}{x}=\sqrt{5}$. What is the value of $x^{11}-7 x^{7}+x^{3}$?

$$
\begin{gathered}
x+\frac{1}{x}=\sqrt{5} \\
x^{2}+2+\frac{1}{x^{2}}=5 \\
x^{2}+\frac{1}{x^{2}}=3 \\
x^{4}+2+\frac{1}{x^{4}}=9 \\
x^{4}+\frac{1}{x^{4}}=7
\end{gathered}
$$

$$
\begin{aligned}
& x^{7}\left(x^{4}-7+\frac{1}{x^{4}}\right. \\
& x^{7}(7-7)=0
\end{aligned}
$$

16. All the roots of the polynomial $x^{6}-10 z^{4}+A z^{4}+B z^{3}+c Z^{2}+D z+16$ are positive integers, possibly repeated. What is the value of B ?

$$
\begin{aligned}
& 1 \\
& 1 \\
& r_{1}+r_{2}+r_{3}+r_{4}+r_{5}+r_{6}=10 \\
& r_{1} r_{2} r_{3} r_{4} r_{5} r_{6}=16 \\
& 1 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

$$
\begin{gathered}
-13=\begin{array}{r}
r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{2} r_{5}+r_{1} r_{2} r_{6} \\
r_{2} r_{3} r_{4}+ \\
8\binom{4}{3}=32 \quad 2\binom{4}{1}\binom{2}{2}=8 \\
4\binom{4}{2}\binom{2}{1}=48 \quad 32+48+8=88 \\
B=-88
\end{array}
\end{gathered}
$$

