The Ninth Grade Math Competition Class Modular Arithmetic Anthony Wang

$$
a, b
$$

1. The remainders when two natural numbers are divided by 12 are 5 and 9. (a) Find the remainder when their product is divided by 12. (b) Find the reminder when their product is divided by 4.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
a & \bmod 12
\end{aligned}=5 \\
& \begin{array}{ll}
\bmod 12=5 & a \equiv 5(\bmod 12) \\
\bmod 12=9 & b \equiv 9
\end{array}(\bmod 12) \\
& a b \equiv 45 \quad(\bmod (2) \\
& \text { ab } \bmod 12=45 \bmod 12 \cdot 9
\end{aligned}
$$

(h)

$$
\begin{gathered}
a b=12 q+4 \\
a b \bmod 4=(12 q+9) \bmod 4 \\
=(1)
\end{gathered}
$$

$$
\left(\begin{array}{c}
\text { 2. Is 2100 } \\
21^{100}-12^{100} \text { amulipleo of 112 } \\
100
\end{array}\right)^{\bmod }=0=11=0 \text { YES }
$$

$21^{100} \bmod 11=(21 \bmod 11)^{100} \bmod 11$

$$
=10^{100} \bmod 11
$$

$$
\begin{aligned}
21^{100} \equiv 10^{100} & \equiv(-1)^{100}(\bmod 11) \\
& \equiv 1 \quad(\bmod 11) \\
12^{100} \equiv 1^{100} & \equiv 1 \quad(\bmod 11)
\end{aligned}
$$

3. Find the remainder when $24^{50}-15^{50}$ is divided by 13 .
4. Find the tens and units digits of 7^{2006}.
5. Find the remainder when $1^{2}+2^{2}+3^{2}+\cdots+99^{2}$ is divided by 13 .
6. Find the remainder when $9^{42}-5^{42}$ is divided by 7 .
7. Find the remainder when 7^{255} is divided by 11 .
8. Find the last two digits of 99^{2005}.
9. A natural number n, has a unit digit of A when expressed in base 12 . Find the remainder when n^{2} is divided by 6 .
