// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package jsonld implements encoding and decoding of JSON as defined in // RFC 4627. The mapping between JSON and Go values is described // in the documentation for the Marshal and Unmarshal functions. // // See tagLabel + " and Go" for an introduction to this package: // https://golang.org/doc/articles/json_and_go.html package jsonld import ( "bytes" "encoding" "encoding/base64" "encoding/json" "fmt" "math" "reflect" "runtime" "sort" "strconv" "strings" "sync" "sync/atomic" "unicode" "unicode/utf8" ) var Ctxt Collapsible const ( tagLabel = "jsonld" tagOmitEmpty = "omitempty" tagCollapsible = "collapsible" ) type payloadWithContext struct { Context Collapsible `jsonld:"@context,omitempty,collapsible"` ID interface{} `jsonld:"@id,omitempty,collapsible"` Type interface{} `jsonld:"@type,omitempty,collapsible"` Obj interface{} } func (p payloadWithContext) Collapse() interface{} { return p } // WithContext func WithContext(c Collapsible) payloadWithContext { Ctxt = c return payloadWithContext{ Context: c, } } var payloadType = reflect.TypeOf(new(payloadWithContext)).Elem() // Marshal func (p payloadWithContext) Marshal(v interface{}) ([]byte, error) { p.Obj = v return Marshal(p) } // Tag used by structs from the ActivityPub package to Marshal and Unmarshal to/from JSON-LD type Tag struct { Name string Ignore bool OmitEmpty bool Collapsible bool } // LoadTag used by structs from the ActivityPub package to Marshal and Unmarshal to/from JSON-LD func LoadTag(tag reflect.StructTag) (Tag, bool) { jlTag, ok := tag.Lookup(tagLabel) if !ok { return Tag{}, false } val := strings.Split(jlTag, ",") cont := func(arr []string, s string) bool { for _, v := range arr { if v == s { return true } } return false } t := Tag{ OmitEmpty: cont(val, tagOmitEmpty), Collapsible: cont(val, tagCollapsible), } t.Name, t.Ignore = func(v string) (string, bool) { if len(v) > 0 && v != "_" { return v, false } return "", true }(val[0]) return t, true } // TagName used by structs from the ActivityPub package to Marshal and Unmarshal to/from JSON-LD func TagName(n string, tag Tag) string { if len(tag.Name) > 0 { return tag.Name } return n } // An UnsupportedTypeError is returned by Marshal when attempting // to encode an unsupported value type. type UnsupportedTypeError struct { Type reflect.Type } // Marshal returns the JSON encoding of v. // // Marshal traverses the value v recursively. // If an encountered value implements the Marshaler interface // and is not a nil pointer, Marshal calls its MarshalJSON method // to produce JSON. If no MarshalJSON method is present but the // value implements encoding.TextMarshaler instead, Marshal calls // its MarshalText method and encodes the result as a JSON string. // The nil pointer exception is not strictly necessary // but mimics a similar, necessary exception in the behavior of // UnmarshalJSON. // // Otherwise, Marshal uses the following type-dependent default encodings: // // Boolean values encode as JSON booleans. // // Floating point, integer, and Number values encode as JSON numbers. // // String values encode as JSON strings coerced to valid UTF-8, // replacing invalid bytes with the Unicode replacement rune. // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e" // to keep some browsers from misinterpreting JSON output as HTML. // Ampersand "&" is also escaped to "\u0026" for the same reason. // This escaping can be disabled using an Encoder that had SetEscapeHTML(false) // called on it. // // Array and slice values encode as JSON arrays, except that // []byte encodes as a base64-encoded string, and a nil slice // encodes as the null JSON value. // // Struct values encode as JSON objects. // Each exported struct field becomes a member of the object, using the // field name as the object key, unless the field is omitted for one of the // reasons given below. // // The encoding of each struct field can be customized by the format string // stored under the tagLabel + "" key in the struct field's tag. // The format string gives the name of the field, possibly followed by a // comma-separated list of options. The name may be empty in order to // specify options without overriding the default field name. // // The "omitempty" option specifies that the field should be omitted // from the encoding if the field has an empty value, defined as // false, 0, a nil pointer, a nil interface value, and any empty array, // slice, map, or string. // // As a special case, if the field tag is "-", the field is always omitted. // Note that a field with name "-" can still be generated using the tag "-,". // // Examples of struct field tags and their meanings: // // // Field appears in JSON as key "myName". // Field int `json:"myName"` // // // Field appears in JSON as key "myName" and // // the field is omitted from the object if its value is empty, // // as defined above. // Field int `json:"myName,omitempty"` // // // Field appears in JSON as key "Field" (the default), but // // the field is skipped if empty. // // Note the leading comma. // Field int `json:",omitempty"` // // // Field is ignored by this package. // Field int `json:"-"` // // // Field appears in JSON as key "-". // Field int `json:"-,"` // // The "string" option signals that a field is stored as JSON inside a // JSON-encoded string. It applies only to fields of string, floating point, // integer, or boolean types. This extra level of encoding is sometimes used // when communicating with JavaScript programs: // // Int64String int64 `json:",string"` // // The key name will be used if it's a non-empty string consisting of // only Unicode letters, digits, and ASCII punctuation except quotation // marks, backslash, and comma. // // Anonymous struct fields are usually marshaled as if their inner exported fields // were fields in the outer struct, subject to the usual Go visibility rules amended // as described in the next paragraph. // An anonymous struct field with a name given in its JSON tag is treated as // having that name, rather than being anonymous. // An anonymous struct field of interface type is treated the same as having // that type as its name, rather than being anonymous. // // The Go visibility rules for struct fields are amended for JSON when // deciding which field to marshal or unmarshal. If there are // multiple fields at the same level, and that level is the least // nested (and would therefore be the nesting level selected by the // usual Go rules), the following extra rules apply: // // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered, // even if there are multiple untagged fields that would otherwise conflict. // // 2) If there is exactly one field (tagged or not according to the first rule), that is selected. // // 3) Otherwise there are multiple fields, and all are ignored; no error occurs. // // Handling of anonymous struct fields is new in Go 1.1. // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of // an anonymous struct field in both current and earlier versions, give the field // a JSON tag of "-". // // Map values encode as JSON objects. The map's key type must either be a // string, an integer type, or implement encoding.TextMarshaler. The map keys // are sorted and used as JSON object keys by applying the following rules, // subject to the UTF-8 coercion described for string values above: // - string keys are used directly // - encoding.TextMarshalers are marshaled // - integer keys are converted to strings // // Pointer values encode as the value pointed to. // A nil pointer encodes as the null JSON value. // // Interface values encode as the value contained in the interface. // A nil interface value encodes as the null JSON value. // // Channel, complex, and function values cannot be encoded in JSON. // Attempting to encode such a value causes Marshal to return // an UnsupportedTypeError. // // JSON cannot represent cyclic data structures and Marshal does not // handle them. Passing cyclic structures to Marshal will result in // an infinite recursion. func Marshal(v interface{}) ([]byte, error) { e := &encodeState{} err := e.marshal(v, encOpts{escapeHTML: true}) if err != nil { return nil, err } output := e.Bytes() typ := reflect.TypeOf(v) if typ.Kind() == reflect.Ptr { typ = typ.Elem() } if typ == payloadType { // @todo(marius): fix this ugly hack output = bytes.Replace(output, []byte(`,"Obj":{`), []byte(","), 1) output = output[:len(output)-1] } return output, nil } func (e *UnsupportedTypeError) Error() string { return tagLabel + ": unsupported type: " + e.Type.String() } type UnsupportedValueError struct { Value reflect.Value Str string } func (e *UnsupportedValueError) Error() string { return tagLabel + ": unsupported value: " + e.Str } // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when // attempting to encode a string value with invalid UTF-8 sequences. // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by // replacing invalid bytes with the Unicode replacement rune U+FFFD. // This error is no longer generated but is kept for backwards compatibility // with programs that might mention it. type InvalidUTF8Error struct { S string // the whole string value that caused the error } func (e *InvalidUTF8Error) Error() string { return tagLabel + ": invalid UTF-8 in string: " + strconv.Quote(e.S) } type MarshalerError struct { Type reflect.Type Err error } func (e *MarshalerError) Error() string { return tagLabel + ": error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error() } var hex = "0123456789abcdef" // An encodeState encodes JSON into a bytes.Buffer. type encodeState struct { bytes.Buffer // accumulated output scratch [64]byte } var encodeStatePool sync.Pool func newEncodeState() *encodeState { if v := encodeStatePool.Get(); v != nil { e := v.(*encodeState) e.Reset() return e } return new(encodeState) } func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) { defer func() { if r := recover(); r != nil { if _, ok := r.(runtime.Error); ok { panic(r) } if s, ok := r.(string); ok { panic(s) } err = r.(error) } }() e.reflectValue(reflect.ValueOf(v), opts) return nil } func (e *encodeState) error(err error) { panic(err) } func isEmptyValue(v reflect.Value) bool { switch v.Kind() { case reflect.Array, reflect.Map, reflect.Slice, reflect.String: return v.Len() == 0 case reflect.Bool: return !v.Bool() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return v.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return v.Uint() == 0 case reflect.Float32, reflect.Float64: return v.Float() == 0 case reflect.Interface, reflect.Ptr: return v.IsNil() case reflect.Struct: // this is important as it removes structs containing only empty elements // to ensure that the jsonld message is not extra verbose with valueless properties return func(reflect.Value) bool { var ret bool = true for i := 0; i < v.NumField(); i++ { ret = ret && isEmptyValue(v.Field(i)) } return ret }(v) } return false } func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) { valueEncoder(v)(e, v, opts) } type encOpts struct { // quoted causes primitive fields to be encoded inside JSON strings. quoted bool // escapeHTML causes '<', '>', and '&' to be escaped in JSON strings. escapeHTML bool } type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts) var encoderCache sync.Map // map[reflect.Type]encoderFunc func valueEncoder(v reflect.Value) encoderFunc { if !v.IsValid() { return invalidValueEncoder } return typeEncoder(v.Type()) } func typeEncoder(t reflect.Type) encoderFunc { if fi, ok := encoderCache.Load(t); ok { return fi.(encoderFunc) } // To deal with recursive types, populate the map with an // indirect func before we build it. This type waits on the // real func (f) to be ready and then calls it. This indirect // func is only used for recursive types. var ( wg sync.WaitGroup f encoderFunc ) wg.Add(1) fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) { wg.Wait() f(e, v, opts) })) if loaded { return fi.(encoderFunc) } // Compute the real encoder and replace the indirect func with it. f = newTypeEncoder(t, true) wg.Done() encoderCache.Store(t, f) return f } var ( marshalerType = reflect.TypeOf(new(json.Marshaler)).Elem() textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem() ) // newTypeEncoder constructs an encoderFunc for a type. // The returned encoder only checks CanAddr when allowAddr is true. func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc { if t.Implements(marshalerType) { return marshalerEncoder } if t.Kind() != reflect.Ptr && allowAddr { if reflect.PtrTo(t).Implements(marshalerType) { return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false)) } } if t.Implements(textMarshalerType) { return textMarshalerEncoder } if t.Kind() != reflect.Ptr && allowAddr { if reflect.PtrTo(t).Implements(textMarshalerType) { return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false)) } } switch t.Kind() { case reflect.Bool: return boolEncoder case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return intEncoder case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return uintEncoder case reflect.Float32: return float32Encoder case reflect.Float64: return float64Encoder case reflect.String: return stringEncoder case reflect.Interface: return interfaceEncoder case reflect.Struct: return newStructEncoder(t) case reflect.Map: return newMapEncoder(t) case reflect.Slice: return newSliceEncoder(t) case reflect.Array: return newArrayEncoder(t) case reflect.Ptr: return newPtrEncoder(t) default: return unsupportedTypeEncoder } } func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) { e.WriteString("null") } func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { if v.Kind() == reflect.Ptr && v.IsNil() { e.WriteString("null") return } m, ok := v.Interface().(json.Marshaler) if !ok { e.WriteString("null") return } b, err := m.MarshalJSON() if err == nil { // copy JSON into buffer, checking validity. err = json.Compact(&e.Buffer, b) } if err != nil { e.error(&MarshalerError{v.Type(), err}) } } func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) { va := v.Addr() if va.IsNil() { e.WriteString("null") return } m := va.Interface().(json.Marshaler) b, err := m.MarshalJSON() if err == nil { // copy JSON into buffer, checking validity. err = json.Compact(&e.Buffer, b) } if err != nil { e.error(&MarshalerError{v.Type(), err}) } } func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { if v.Kind() == reflect.Ptr && v.IsNil() { e.WriteString("null") return } m := v.Interface().(encoding.TextMarshaler) b, err := m.MarshalText() if err != nil { e.error(&MarshalerError{v.Type(), err}) } e.stringBytes(b, opts.escapeHTML) } func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { va := v.Addr() if va.IsNil() { e.WriteString("null") return } m := va.Interface().(encoding.TextMarshaler) b, err := m.MarshalText() if err != nil { e.error(&MarshalerError{v.Type(), err}) } e.stringBytes(b, opts.escapeHTML) } func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) { if opts.quoted { e.WriteByte('"') } if v.Bool() { e.WriteString("true") } else { e.WriteString("false") } if opts.quoted { e.WriteByte('"') } } func intEncoder(e *encodeState, v reflect.Value, opts encOpts) { b := strconv.AppendInt(e.scratch[:0], v.Int(), 10) if opts.quoted { e.WriteByte('"') } e.Write(b) if opts.quoted { e.WriteByte('"') } } func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) { b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10) if opts.quoted { e.WriteByte('"') } e.Write(b) if opts.quoted { e.WriteByte('"') } } type floatEncoder int // number of bits func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { f := v.Float() if math.IsInf(f, 0) || math.IsNaN(f) { e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))}) } // Convert as if by ES6 number to string conversion. // This matches most other JSON generators. // See golang.org/issue/6384 and golang.org/issue/14135. // Like fmt %g, but the exponent cutoffs are different // and exponents themselves are not padded to two digits. b := e.scratch[:0] abs := math.Abs(f) fmt := byte('f') // Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right. if abs != 0 { if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) { fmt = 'e' } } b = strconv.AppendFloat(b, f, fmt, -1, int(bits)) if fmt == 'e' { // clean up e-09 to e-9 n := len(b) if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' { b[n-2] = b[n-1] b = b[:n-1] } } if opts.quoted { e.WriteByte('"') } e.Write(b) if opts.quoted { e.WriteByte('"') } } var ( float32Encoder = (floatEncoder(32)).encode float64Encoder = (floatEncoder(64)).encode ) func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) { if v.Type() == numberType { numStr := v.String() // In Go1.5 the empty string encodes to "0", while this is not a valid number literal // we keep compatibility so check validity after this. if numStr == "" { numStr = "0" // Number's zero-val } if !isValidNumber(numStr) { e.error(fmt.Errorf(tagLabel+": invalid number literal %q", numStr)) } e.WriteString(numStr) return } if opts.quoted { sb, err := Marshal(v.String()) if err != nil { e.error(err) } e.string(string(sb), opts.escapeHTML) } else { e.string(v.String(), opts.escapeHTML) } } func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) { if v.IsNil() { e.WriteString("null") return } e.reflectValue(v.Elem(), opts) } func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) { e.error(&UnsupportedTypeError{v.Type()}) } type structEncoder struct { fields []field fieldEncs []encoderFunc } func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { e.WriteByte('{') first := true for i, f := range se.fields { fv := fieldByIndex(v, f.index) if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) { continue } if first { first = false } else { e.WriteByte(',') } // TODO(marius): how bad is this? //opts.Collapsible = f.Collapsible /* if f.Collapsible { collapsingMethod := fv.MethodByName("Collapse") if !collapsingMethod.IsValid() || collapsingMethod.IsNil() { continue } e.string(f.Name, opts.escapeHTML) e.WriteByte(':') content := collapsingMethod.Call(nil)[0].Bytes() e.Write(content) continue } */ e.string(f.name, opts.escapeHTML) e.WriteByte(':') opts.quoted = f.quoted se.fieldEncs[i](e, fv, opts) } e.WriteByte('}') } func newStructEncoder(t reflect.Type) encoderFunc { fields := cachedTypeFields(t) se := &structEncoder{ fields: fields, fieldEncs: make([]encoderFunc, len(fields)), } for i, f := range fields { se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index)) } return se.encode } type mapEncoder struct { elemEnc encoderFunc } func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { if v.IsNil() { e.WriteString("null") return } e.WriteByte('{') // Extract and sort the keys. keys := v.MapKeys() sv := make([]reflectWithString, len(keys)) for i, v := range keys { sv[i].v = v if err := sv[i].resolve(); err != nil { e.error(&MarshalerError{v.Type(), err}) } } sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s }) for i, kv := range sv { if i > 0 { e.WriteByte(',') } e.string(kv.s, opts.escapeHTML) e.WriteByte(':') me.elemEnc(e, v.MapIndex(kv.v), opts) } e.WriteByte('}') } func newMapEncoder(t reflect.Type) encoderFunc { switch t.Key().Kind() { case reflect.String, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: default: if !t.Key().Implements(textMarshalerType) { return unsupportedTypeEncoder } } me := &mapEncoder{typeEncoder(t.Elem())} return me.encode } func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) { if v.IsNil() { e.WriteString("null") return } s := v.Bytes() e.WriteByte('"') if len(s) < 1024 { // for small buffers, using Encode directly is much faster. dst := make([]byte, base64.StdEncoding.EncodedLen(len(s))) base64.StdEncoding.Encode(dst, s) e.Write(dst) } else { // for large buffers, avoid unnecessary extra temporary // buffer space. enc := base64.NewEncoder(base64.StdEncoding, e) enc.Write(s) enc.Close() } e.WriteByte('"') } // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil. type sliceEncoder struct { arrayEnc encoderFunc } func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { if v.IsNil() { e.WriteString("null") return } se.arrayEnc(e, v, opts) } func newSliceEncoder(t reflect.Type) encoderFunc { // Byte slices get special treatment; arrays don't. if t.Elem().Kind() == reflect.Uint8 { p := reflect.PtrTo(t.Elem()) if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) { return encodeByteSlice } } enc := &sliceEncoder{newArrayEncoder(t)} return enc.encode } type arrayEncoder struct { elemEnc encoderFunc } func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { e.WriteByte('[') n := v.Len() for i := 0; i < n; i++ { if i > 0 { e.WriteByte(',') } ae.elemEnc(e, v.Index(i), opts) } e.WriteByte(']') } func newArrayEncoder(t reflect.Type) encoderFunc { enc := &arrayEncoder{typeEncoder(t.Elem())} return enc.encode } type ptrEncoder struct { elemEnc encoderFunc } func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { if v.IsNil() { e.WriteString("null") return } pe.elemEnc(e, v.Elem(), opts) } func newPtrEncoder(t reflect.Type) encoderFunc { enc := &ptrEncoder{typeEncoder(t.Elem())} return enc.encode } type condAddrEncoder struct { canAddrEnc, elseEnc encoderFunc } func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { if v.CanAddr() { ce.canAddrEnc(e, v, opts) } else { ce.elseEnc(e, v, opts) } } // newCondAddrEncoder returns an encoder that checks whether its value // CanAddr and delegates to canAddrEnc if so, else to elseEnc. func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc { enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc} return enc.encode } func isValidTag(s string) bool { if s == "" { return false } for _, c := range s { switch { case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): // Backslash and quote chars are reserved, but // otherwise any punctuation chars are allowed // in a tag name. default: if !unicode.IsLetter(c) && !unicode.IsDigit(c) { return false } } } return true } func fieldByIndex(v reflect.Value, index []int) reflect.Value { for _, i := range index { if v.Kind() == reflect.Ptr { if v.IsNil() { return reflect.Value{} } v = v.Elem() } v = v.Field(i) } return v } func typeByIndex(t reflect.Type, index []int) reflect.Type { for _, i := range index { if t.Kind() == reflect.Ptr { t = t.Elem() } t = t.Field(i).Type } return t } type reflectWithString struct { v reflect.Value s string } func (w *reflectWithString) resolve() error { if w.v.Kind() == reflect.String { w.s = w.v.String() return nil } if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok { buf, err := tm.MarshalText() w.s = string(buf) return err } switch w.v.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: w.s = strconv.FormatInt(w.v.Int(), 10) return nil case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: w.s = strconv.FormatUint(w.v.Uint(), 10) return nil } panic("unexpected map key type") } // NOTE: keep in sync with stringBytes below. func (e *encodeState) string(s string, escapeHTML bool) int { len0 := e.Len() e.WriteByte('"') start := 0 for i := 0; i < len(s); { if b := s[i]; b < utf8.RuneSelf { if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) { i++ continue } if start < i { e.WriteString(s[start:i]) } switch b { case '\\', '"': e.WriteByte('\\') e.WriteByte(b) case '\n': e.WriteByte('\\') e.WriteByte('n') case '\r': e.WriteByte('\\') e.WriteByte('r') case '\t': e.WriteByte('\\') e.WriteByte('t') default: // This encodes bytes < 0x20 except for \t, \n and \r. // If escapeHTML is set, it also escapes <, >, and & // because they can lead to security holes when // user-controlled strings are rendered into JSON // and served to some browsers. e.WriteString(`\u00`) e.WriteByte(hex[b>>4]) e.WriteByte(hex[b&0xF]) } i++ start = i continue } c, size := utf8.DecodeRuneInString(s[i:]) if c == utf8.RuneError && size == 1 { if start < i { e.WriteString(s[start:i]) } e.WriteString(`\ufffd`) i += size start = i continue } // U+2028 is LINE SEPARATOR. // U+2029 is PARAGRAPH SEPARATOR. // They are both technically valid characters in JSON strings, // but don't work in JSONP, which has to be evaluated as JavaScript, // and can lead to security holes there. It is valid JSON to // escape them, so we do so unconditionally. // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. if c == '\u2028' || c == '\u2029' { if start < i { e.WriteString(s[start:i]) } e.WriteString(`\u202`) e.WriteByte(hex[c&0xF]) i += size start = i continue } i += size } if start < len(s) { e.WriteString(s[start:]) } e.WriteByte('"') return e.Len() - len0 } // NOTE: keep in sync with string above. func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int { len0 := e.Len() e.WriteByte('"') start := 0 for i := 0; i < len(s); { if b := s[i]; b < utf8.RuneSelf { if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) { i++ continue } if start < i { e.Write(s[start:i]) } switch b { case '\\', '"': e.WriteByte('\\') e.WriteByte(b) case '\n': e.WriteByte('\\') e.WriteByte('n') case '\r': e.WriteByte('\\') e.WriteByte('r') case '\t': e.WriteByte('\\') e.WriteByte('t') default: // This encodes bytes < 0x20 except for \t, \n and \r. // If escapeHTML is set, it also escapes <, >, and & // because they can lead to security holes when // user-controlled strings are rendered into JSON // and served to some browsers. e.WriteString(`\u00`) e.WriteByte(hex[b>>4]) e.WriteByte(hex[b&0xF]) } i++ start = i continue } c, size := utf8.DecodeRune(s[i:]) if c == utf8.RuneError && size == 1 { if start < i { e.Write(s[start:i]) } e.WriteString(`\ufffd`) i += size start = i continue } // U+2028 is LINE SEPARATOR. // U+2029 is PARAGRAPH SEPARATOR. // They are both technically valid characters in JSON strings, // but don't work in JSONP, which has to be evaluated as JavaScript, // and can lead to security holes there. It is valid JSON to // escape them, so we do so unconditionally. // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. if c == '\u2028' || c == '\u2029' { if start < i { e.Write(s[start:i]) } e.WriteString(`\u202`) e.WriteByte(hex[c&0xF]) i += size start = i continue } i += size } if start < len(s) { e.Write(s[start:]) } e.WriteByte('"') return e.Len() - len0 } // A field represents a single field found in a struct. type field struct { name string nameBytes []byte // []byte(Name) equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent tag bool index []int typ reflect.Type omitEmpty bool collapsible bool quoted bool } func fillField(f field) field { f.nameBytes = []byte(f.name) f.equalFold = foldFunc(f.nameBytes) return f } // byIndex sorts field by index sequence. type byIndex []field func (x byIndex) Len() int { return len(x) } func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byIndex) Less(i, j int) bool { for k, xik := range x[i].index { if k >= len(x[j].index) { return false } if xik != x[j].index[k] { return xik < x[j].index[k] } } return len(x[i].index) < len(x[j].index) } // typeFields returns a list of fields that JSON should recognize for the given type. // The algorithm is breadth-first search over the set of structs to include - the top struct // and then any reachable anonymous structs. func typeFields(t reflect.Type) []field { // Anonymous fields to explore at the current level and the next. current := []field{} next := []field{{typ: t}} // Count of queued names for current level and the next. count := map[reflect.Type]int{} nextCount := map[reflect.Type]int{} // Types already visited at an earlier level. visited := map[reflect.Type]bool{} // Fields found. var fields []field for len(next) > 0 { current, next = next, current[:0] count, nextCount = nextCount, map[reflect.Type]int{} for _, f := range current { if visited[f.typ] { continue } visited[f.typ] = true // Scan f.typ for fields to include. for i := 0; i < f.typ.NumField(); i++ { sf := f.typ.Field(i) if sf.Anonymous { t := sf.Type if t.Kind() == reflect.Ptr { t = t.Elem() } // If embedded, StructField.PkgPath is not a reliable // indicator of whether the field is exported. // See https://golang.org/issue/21122 if !isExported(t.Name()) && t.Kind() != reflect.Struct { // Ignore embedded fields of unexported non-struct types. // Do not ignore embedded fields of unexported struct types // since they may have exported fields. continue } } else if sf.PkgPath != "" { // Ignore unexported non-embedded fields. continue } tag := sf.Tag.Get(tagLabel) if tag == "-" { continue } name, opts := parseTag(tag) if !isValidTag(name) { name = "" } index := make([]int, len(f.index)+1) copy(index, f.index) index[len(f.index)] = i ft := sf.Type if ft.Name() == "" && ft.Kind() == reflect.Ptr { // Follow pointer. ft = ft.Elem() } // Only strings, floats, integers, and booleans can be quoted. quoted := false if opts.Contains("string") { switch ft.Kind() { case reflect.Bool, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: quoted = true } } // Record found field and index sequence. if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { tagged := name != "" if name == "" { name = sf.Name } fields = append(fields, fillField(field{ name: name, tag: tagged, index: index, typ: ft, omitEmpty: opts.Contains(tagOmitEmpty), collapsible: opts.Contains(tagCollapsible), quoted: quoted, })) if count[f.typ] > 1 { // If there were multiple instances, add a second, // so that the annihilation code will see a duplicate. // It only cares about the distinction between 1 or 2, // so don't bother generating any more copies. fields = append(fields, fields[len(fields)-1]) } continue } // Record new anonymous struct to explore in next round. nextCount[ft]++ if nextCount[ft] == 1 { next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) } } } } sort.Slice(fields, func(i, j int) bool { x := fields // sort field by name, breaking ties with depth, then // breaking ties with "name came from json tag", then // breaking ties with index sequence. if x[i].name != x[j].name { return x[i].name < x[j].name } if len(x[i].index) != len(x[j].index) { return len(x[i].index) < len(x[j].index) } if x[i].tag != x[j].tag { return x[i].tag } return byIndex(x).Less(i, j) }) // Delete all fields that are hidden by the Go rules for embedded fields, // except that fields with JSON tags are promoted. // The fields are sorted in primary order of name, secondary order // of field index length. Loop over names; for each name, delete // hidden fields by choosing the one dominant field that survives. out := fields[:0] for advance, i := 0, 0; i < len(fields); i += advance { // One iteration per name. // Find the sequence of fields with the name of this first field. fi := fields[i] name := fi.name for advance = 1; i+advance < len(fields); advance++ { fj := fields[i+advance] if fj.name != name { break } } if advance == 1 { // Only one field with this name out = append(out, fi) continue } dominant, ok := dominantField(fields[i : i+advance]) if ok { out = append(out, dominant) } } fields = out sort.Sort(byIndex(fields)) return fields } // isExported reports whether the identifier is exported. func isExported(id string) bool { r, _ := utf8.DecodeRuneInString(id) return unicode.IsUpper(r) } // dominantField looks through the fields, all of which are known to // have the same name, to find the single field that dominates the // others using Go's embedding rules, modified by the presence of // JSON tags. If there are multiple top-level fields, the boolean // will be false: This condition is an error in Go and we skip all // the fields. func dominantField(fields []field) (field, bool) { // The fields are sorted in increasing index-length order. The winner // must therefore be one with the shortest index length. Drop all // longer entries, which is easy: just truncate the slice. length := len(fields[0].index) tagged := -1 // Index of first tagged field. for i, f := range fields { if len(f.index) > length { fields = fields[:i] break } if f.tag { if tagged >= 0 { // Multiple tagged fields at the same level: conflict. // Return no field. return field{}, false } tagged = i } } if tagged >= 0 { return fields[tagged], true } // All remaining fields have the same length. If there's more than one, // we have a conflict (two fields named "X" at the same level) and we // return no field. if len(fields) > 1 { return field{}, false } return fields[0], true } var fieldCache struct { value atomic.Value // map[reflect.Type][]field mu sync.Mutex // used only by writers } // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. func cachedTypeFields(t reflect.Type) []field { m, _ := fieldCache.value.Load().(map[reflect.Type][]field) f := m[t] if f != nil { return f } // Compute fields without lock. // Might duplicate effort but won't hold other computations back. f = typeFields(t) if f == nil { f = []field{} } fieldCache.mu.Lock() m, _ = fieldCache.value.Load().(map[reflect.Type][]field) newM := make(map[reflect.Type][]field, len(m)+1) for k, v := range m { newM[k] = v } newM[t] = f fieldCache.value.Store(newM) fieldCache.mu.Unlock() return f }