Adjust training parameters to train gpt2-large

This commit is contained in:
Anthony Wang 2022-07-16 20:20:34 -05:00
parent d47afd47a3
commit e61a793dd6
Signed by: a
GPG key ID: BC96B00AEC5F2D76
2 changed files with 9 additions and 10 deletions

6
bot.py
View file

@ -18,8 +18,8 @@ parser.add_argument('-m', '--model', default='model',
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = AutoModelForCausalLM.from_pretrained(args.model).to('cuda')
tokenizer = AutoTokenizer.from_pretrained('gpt2-medium')
model = AutoModelForCausalLM.from_pretrained(args.model, low_cpu_mem_usage=True).to('cuda')
if args.input is None:
@ -74,7 +74,7 @@ if args.input is None:
print(args.input)
inputs = tokenizer.encode(args.input, return_tensors='pt').to('cuda')
output = tokenizer.decode(model.generate(
inputs, do_sample=True, max_length=150, top_p=0.9)[0])
inputs, max_length=150, do_sample=True, top_p=0.9)[0])
print(output)

View file

@ -1,7 +1,6 @@
from argparse import ArgumentParser
from itertools import chain
from torch import float16
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, default_data_collator
@ -22,7 +21,7 @@ tokenized_dataset = raw_dataset.map(lambda examples: tokenizer(examples['text'])
# Generate chunks of block_size
block_size = 256 # tokenizer.model_max_length
block_size = tokenizer.model_max_length
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
@ -38,16 +37,16 @@ def group_texts(examples):
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
result['labels'] = result['input_ids'].copy()
return result
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
# Create and train the model
model = AutoModelForCausalLM.from_pretrained('gpt2-large',
torch_dtype=float16, low_cpu_mem_usage=True).to('cuda')
trainer = Trainer(model, TrainingArguments(output_dir=args.output, per_device_train_batch_size=1),
default_data_collator, lm_dataset['train'])
model = AutoModelForCausalLM.from_pretrained('gpt2-large', low_cpu_mem_usage=True).to('cuda')
trainer = Trainer(model, TrainingArguments(output_dir=args.output, save_strategy='no',
per_device_train_batch_size=1, gradient_checkpointing=True, optim='adafactor'),
default_data_collator, lm_dataset['train'])
trainer.train()
trainer.save_model()