In programming contests, there is a strict limit on program runtime. This means that in order to pass, your program needs to finish running within a certain timeframe.
For USACO, this limit is $4$ seconds for Java submissions. A conservative estimate for the number of operations the grading server can handle per second is $10^8$ (but could be closer to $5 \cdot 10^8$ given good constant factors).
We want a method of how many operations it takes to run each algorithm, in terms of the input size $n$. Fortunately, this can be done relatively easily using [Big O Notation](https://en.wikipedia.org/wiki/Big_O_notation), which expresses worst-case complexity as a function of $n$ as $n$ gets arbitrarily large. Complexity is an upper bound for the number of steps an algorithm requires as a function of the input size. In Big O notation, we denote the complexity of a function as $O(f(n))$, where $f(n)$ is a function without constant factors or lower-order terms. We'll see some examples of how this works, as follows.
We can find the time complexity of multiple loops by multiplying together the time complexities of each loop. This example is $O(nm)$, because the outer loop runs $O(n)$ iterations and the inner loop $O(m)$.
In this example, the outer loop runs $O(n)$ iterations, and the inner loop runs anywhere between 1 and n iterations (which is a maximum of $n$). Since Big O notation calculates worst-case time complexity, we must take the factor of $n$ from the inner loop. Thus, this code is $O(n^2)$.
If an algorithm contains multiple blocks, then its time complexity is the worst time complexity out of any block. For example, the following code is $O(n^2)$.
The following code is $O(n^2 + nm)$, because it consists of two blocks of complexity $O(n^2)$ and $O(nm)$, and neither of them is a lower order function with respect to the other.
Here are conservative upper bounds on the value of $n$ for each time complexity. You can probably get away with more than this, but this should allow you to quickly check whether an algorithm is viable.