Delete old code

This commit is contained in:
Anthony Wang 2024-04-21 11:53:56 -04:00
parent 959f31d585
commit b5ffcec41a
Signed by: a
SSH key fingerprint: SHA256:B5ADfMCqd2M7d/jtXDoihAV/yfXOAbWWri9+GdCN4hQ
7 changed files with 0 additions and 371 deletions

View file

@ -1 +0,0 @@
{"0": [0, 0, 0], "1": [0, 0, 85], "2": [0, 0, 170], "3": [0, 0, 255], "4": [0, 85, 0], "5": [0, 85, 85], "6": [0, 85, 170], "7": [0, 85, 255], "8": [0, 170, 0], "9": [0, 170, 85], "10": [0, 170, 170], "11": [0, 170, 255], "12": [0, 255, 0], "13": [0, 255, 85], "14": [0, 255, 170], "15": [0, 255, 255], "16": [85, 0, 0], "17": [85, 0, 85], "18": [85, 0, 170], "19": [85, 0, 255], "20": [85, 85, 0], "21": [85, 85, 85], "22": [85, 85, 170], "23": [85, 85, 255], "24": [85, 170, 0], "25": [85, 170, 85], "26": [85, 170, 170], "27": [85, 170, 255], "28": [85, 255, 0], "29": [85, 255, 85], "30": [85, 255, 170], "31": [85, 255, 255], "32": [170, 0, 0], "33": [170, 0, 85], "34": [170, 0, 170], "35": [170, 0, 255], "36": [170, 85, 0], "37": [170, 85, 85], "38": [170, 85, 170], "39": [170, 85, 255], "40": [170, 170, 0], "41": [170, 170, 85], "42": [170, 170, 170], "43": [170, 170, 255], "44": [170, 255, 0], "45": [170, 255, 85], "46": [170, 255, 170], "47": [170, 255, 255], "48": [255, 0, 0], "49": [255, 0, 85], "50": [255, 0, 170], "51": [255, 0, 255], "52": [255, 85, 0], "53": [255, 85, 85], "54": [255, 85, 170], "55": [255, 85, 255], "56": [255, 170, 0], "57": [255, 170, 85], "58": [255, 170, 170], "59": [255, 170, 255], "60": [255, 255, 0], "61": [255, 255, 85], "62": [255, 255, 170], "63": [255, 255, 255]}

View file

@ -1 +0,0 @@
{"corner_colors": {"0": [["#000000", "#000000", "#000000", "#000000"], ["#000000", "#ff0000", "#ff0000", "#000000"], ["#000000", "#ff0000", "#ff0000", "#000000"], ["#000000", "#000000", "#000000", "#000000"]], "1": [["#000000", "#000000", "#000000", "#000000"], ["#000000", "#00ff00", "#00ff00", "#000000"], ["#000000", "#00ff00", "#00ff00", "#000000"], ["#000000", "#000000", "#000000", "#000000"]], "2": [["#000000", "#000000", "#000000", "#000000"], ["#000000", "#0000ff", "#0000ff", "#000000"], ["#000000", "#0000ff", "#0000ff", "#000000"], ["#000000", "#000000", "#000000", "#000000"]], "3": [["#000000", "#000000", "#000000", "#000000"], ["#000000", "#ffffff", "#ffffff", "#000000"], ["#000000", "#ffffff", "#ffffff", "#000000"], ["#000000", "#000000", "#000000", "#000000"]]}, "corner_width": 4, "corner_height": 4}

View file

@ -1,9 +0,0 @@
import itertools
import json
color_vals = [0, 85, 170, 255] # giving all color channels the same equally-spaced values
color_combs = {i: comb for i, comb in enumerate(itertools.product(color_vals, repeat=3))}
with open("colors_64_v0.json", "w") as f:
json.dump(color_combs, f)

View file

@ -1,36 +0,0 @@
import json
import sys # hacky way to import utils for now
sys.path.append("..")
from utils import rgb_to_hex
corner_shape = [ # giving all 4 corners have the same shape
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 0],
]
center_color = [0, 0, 0]
corner_colors = { # assuming each corner will only have two colors (center_color and a corner-specific color)
0: [255, 0, 0],
1: [0, 255, 0],
2: [0, 0, 255],
3: [255, 255, 255,]
}
center_color = rgb_to_hex(center_color)
corner_colors = {key: rgb_to_hex(val) for key, val in corner_colors.items()}
corner_colored_shapes = {
corner_ind: [[corner_color if cell else center_color for cell in row] for row in corner_shape]
for corner_ind, corner_color in corner_colors.items()
}
with open("corners_hollow4x4_v0.json", "w") as f:
json.dump({
"corner_colors": corner_colored_shapes,
"corner_width": len(corner_shape[0]),
"corner_height": len(corner_shape),
}, f)

View file

@ -1,167 +0,0 @@
import argparse
import json
import math
import time
import tkinter as tk
import numpy as np
import pygame
from utils import rgb_to_hex
def parse_args():
return {
"cell_size": 8, # in pixels
"num_cells_w": 100, # TODO: w/h or r/c?
"num_cells_h": 100,
"colors_path": "configs/colors_64_v0.json",
"corners_path": "configs/corners_hollow4x4_v0.json",
"frame_delay": 1000 // 20, # time b/w frames, in millis
}
def seq_to_frames(bin_seq: np.ndarray, args: dict) -> np.ndarray: # TODO: Namespace
"""
Converts a binary sequence to an array of frames.
TODO: doc, expecting size of exactly one frame in the future?
np.packbits seems relevant but limited to 8 bits
Args:
bin_seq: a 1D array of binary values.
args: config parameters
Returns:
array of shape (num_frames, args["num_cells_h"], args["num_cells_w"]), where each element is
a hex string for the color of that cell
"""
bin_seq = bin_seq.copy() # so that we don't mutate bin_seq
with open(args["colors_path"], "r") as f:
colors = json.load(f)
with open(args["corners_path"], "r") as f:
corners = json.load(f)
assert len(corners["corner_colors"]) == 4, "Hardcoded for 4 corners"
corner_width = corners["corner_width"]
corner_height = corners["corner_height"]
num_colors = len(colors)
bits_per_cell = int(math.log2(num_colors))
assert 2**bits_per_cell == num_colors, "Assumed the number of colors is a power of 2."
# bits_per_frame = bits_per_cell * args["num_cells_w"] * args["num_cells_h"]
# num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
# bin_seq.resize(bits_per_frame * num_frames)
# # frames_bits = bin_seq.reshape(num_frames, args["num_cells_h"], args["num_cells_w"], bits_per_cell)
#
# pows = 2 ** np.arange(bits_per_cell)
# frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
cells_per_frame = args["num_cells_w"] * args["num_cells_h"] - 4 * corner_width * corner_height
bits_per_frame = bits_per_cell * cells_per_frame
num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
bin_seq.resize(bits_per_frame * num_frames)
frames_bits = bin_seq.reshape(num_frames, cells_per_frame, bits_per_cell)
pows = 2 ** np.arange(bits_per_cell)
frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
# Efficiently map frame_vals to the corresponding hex colors (https://stackoverflow.com/a/55950051)
color_mapping_arr = np.empty(num_colors, dtype="<U7")
for i in range(num_colors):
color_mapping_arr[i] = rgb_to_hex(colors[str(i)]) # JSON keys stored as str
frames_colors = color_mapping_arr[frames_vals]
num_top_cells = (args["num_cells_w"] - 2 * corner_width) * corner_height # TODO: explain
top_cells = frames_colors[:, :num_top_cells].reshape(num_frames, corner_height, -1)
center_cells = frames_colors[:, num_top_cells:-num_top_cells].reshape(num_frames, -1, args["num_cells_w"])
bottom_cells = frames_colors[:, -num_top_cells:].reshape(num_frames, corner_height, -1)
corners_numpy_dict = {key: np.broadcast_to(val, (num_frames, corner_height, corner_width))
for key, val in corners["corner_colors"].items()}
top_rows = np.concatenate([corners_numpy_dict["0"], top_cells, corners_numpy_dict["1"]], axis=2)
bottom_rows = np.concatenate([corners_numpy_dict["2"], bottom_cells, corners_numpy_dict["3"]], axis=2)
return np.concatenate([top_rows, center_cells, bottom_rows], axis=1)
class AnimatedFrames:
def __init__(self, frames: np.ndarray, args: dict):
self.frames = frames
self.args = args
def display_frame(self):
func_start_time = time.time_ns()
for inds_tuple, color_hex in np.ndenumerate(self.frames[self.frame_ind % len(self.frames)]):
self.canvas.itemconfigure(self.inds_to_id[inds_tuple], fill=color_hex)
self.canvas.itemconfigure(self._debug_text_id, text=self.frame_ind)
self.frame_ind += 1
adjusted_delay = round((self.start_time + self.args["frame_delay"] * int(1e6)
* self.frame_ind - func_start_time) / 1e6)
assert adjusted_delay > 1, adjusted_delay # o/w we lagged too far behind, assuming 1 ms for this instruction
self.canvas.after(adjusted_delay, self.display_frame) # TODO: check delay is exact
# TODO: set self time and just sleep until then
def animate(self):
epilepsy_warning_id = self.canvas.create_text(self.width_pixels / 2, self.height_pixels / 2,
text="Warning: Epilepsy")
def delete_and_animate():
self.canvas.delete(epilepsy_warning_id)
self.start_time = time.time_ns()
self.display_frame()
self.canvas.after(5000, delete_and_animate)
# self.display_frame()
self.root.mainloop()
if __name__ == "__main__":
args = parse_args()
rand_bin_seq = np.random.randint(2, size=1000000)
frames = seq_to_frames(rand_bin_seq, args)
width_pixels = args["cell_size"] * args["num_cells_w"]
height_pixels = args["cell_size"] * args["num_cells_h"]
pygame.init()
clock = pygame.time.Clock()
screen = pygame.display.set_mode((width_pixels, height_pixels))
font = pygame.font.SysFont(None, 25)
pygame.event.get()
text = font.render("<Epilepsy Warning>", True, "white")
text_rect = text.get_rect(center=(width_pixels / 2, height_pixels / 2))
screen.blit(text, text_rect)
pygame.display.update()
clock.tick(0.2)
frame_ind = 0
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
for (i, j), color_hex in np.ndenumerate(frames[frame_ind % len(frames)]):
rect = pygame.Rect(i * args["cell_size"], j * args["cell_size"], args["cell_size"], args["cell_size"])
pygame.draw.rect(screen, color_hex, rect)
text = font.render(str(frame_ind), True, "black")
text_rect = text.get_rect(center=((args["num_cells_w"] - 2) * args["cell_size"], (args["num_cells_h"] - 2) * args["cell_size"]))
screen.blit(text, text_rect)
frame_ind += 1
pygame.display.update()
# clock.tick(15)
clock.tick_busy_loop(10) # https://gamedev.stackexchange.com/a/102831
if frame_ind % 30 == 0:
print(f"{clock.get_fps()=}")
# https://stackoverflow.com/questions/28405222/syncing-image-display-with-screen-refresh-rate?
pygame.quit()

View file

@ -1,151 +0,0 @@
import argparse
import json
import math
import time
import tkinter as tk
import numpy as np
from utils import rgb_to_hex
def parse_args():
return {
"cell_size": 8, # in pixels
"num_cells_w": 100, # TODO: w/h or r/c?
"num_cells_h": 100,
"colors_path": "configs/colors_64_v0.json",
"corners_path": "configs/corners_hollow4x4_v0.json",
"frame_delay": 1000 // 15, # time b/w frames, in millis
}
def seq_to_frames(bin_seq: np.ndarray, args: dict) -> np.ndarray: # TODO: Namespace
"""
Converts a binary sequence to an array of frames.
TODO: doc, expecting size of exactly one frame in the future?
np.packbits seems relevant but limited to 8 bits
Args:
bin_seq: a 1D array of binary values.
args: config parameters
Returns:
array of shape (num_frames, args["num_cells_h"], args["num_cells_w"]), where each element is
a hex string for the color of that cell
"""
bin_seq = bin_seq.copy() # so that we don't mutate bin_seq
with open(args["colors_path"], "r") as f:
colors = json.load(f)
with open(args["corners_path"], "r") as f:
corners = json.load(f)
assert len(corners["corner_colors"]) == 4, "Hardcoded for 4 corners"
corner_width = corners["corner_width"]
corner_height = corners["corner_height"]
num_colors = len(colors)
bits_per_cell = int(math.log2(num_colors))
assert 2**bits_per_cell == num_colors, "Assumed the number of colors is a power of 2."
# bits_per_frame = bits_per_cell * args["num_cells_w"] * args["num_cells_h"]
# num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
# bin_seq.resize(bits_per_frame * num_frames)
# # frames_bits = bin_seq.reshape(num_frames, args["num_cells_h"], args["num_cells_w"], bits_per_cell)
#
# pows = 2 ** np.arange(bits_per_cell)
# frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
cells_per_frame = args["num_cells_w"] * args["num_cells_h"] - 4 * corner_width * corner_height
bits_per_frame = bits_per_cell * cells_per_frame
num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
bin_seq.resize(bits_per_frame * num_frames)
frames_bits = bin_seq.reshape(num_frames, cells_per_frame, bits_per_cell)
pows = 2 ** np.arange(bits_per_cell)
frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
# Efficiently map frame_vals to the corresponding hex colors (https://stackoverflow.com/a/55950051)
color_mapping_arr = np.empty(num_colors, dtype="<U7")
for i in range(num_colors):
color_mapping_arr[i] = rgb_to_hex(colors[str(i)]) # JSON keys stored as str
frames_colors = color_mapping_arr[frames_vals]
num_top_cells = (args["num_cells_w"] - 2 * corner_width) * corner_height # TODO: explain
top_cells = frames_colors[:, :num_top_cells].reshape(num_frames, corner_height, -1)
center_cells = frames_colors[:, num_top_cells:-num_top_cells].reshape(num_frames, -1, args["num_cells_w"])
bottom_cells = frames_colors[:, -num_top_cells:].reshape(num_frames, corner_height, -1)
corners_numpy_dict = {key: np.broadcast_to(val, (num_frames, corner_height, corner_width))
for key, val in corners["corner_colors"].items()}
top_rows = np.concatenate([corners_numpy_dict["0"], top_cells, corners_numpy_dict["1"]], axis=2)
bottom_rows = np.concatenate([corners_numpy_dict["2"], bottom_cells, corners_numpy_dict["3"]], axis=2)
return np.concatenate([top_rows, center_cells, bottom_rows], axis=1)
class AnimatedFrames:
def __init__(self, frames: np.ndarray, args: dict):
self.frames = frames
self.args = args
self.width_pixels = args["cell_size"] * args["num_cells_w"]
self.height_pixels = args["cell_size"] * args["num_cells_h"]
self.root = tk.Tk()
self.root.columnconfigure(0, weight=1)
self.root.rowconfigure(0, weight=1)
self.canvas = tk.Canvas(self.root, width=self.width_pixels, height=self.height_pixels,
borderwidth=0, highlightthickness=0) # https://stackoverflow.com/a/63220348
self.canvas.grid(column=0, row=0)
# We will create each cell (rectangle) now, and then update their colors in different frames
self.inds_to_id = dict() # map from (row_ind, col_ind) to the id of the rectangle at that cell position
for i in range(args["num_cells_h"]):
for j in range(args["num_cells_w"]):
self.inds_to_id[(i, j)] = self.canvas.create_rectangle(
i * args["cell_size"], j * args["cell_size"], (i + 1) * args["cell_size"],
(j + 1) * args["cell_size"], width=0
)
self.frame_ind = 0 # the index in `self.frames` of the next frame to display
self.start_time = None
self._debug_text_id = self.canvas.create_text((args["num_cells_w"] - 2) * args["cell_size"], (args["num_cells_h"] - 2) * args["cell_size"])
def display_frame(self):
func_start_time = time.time_ns()
for inds_tuple, color_hex in np.ndenumerate(self.frames[self.frame_ind % len(self.frames)]):
self.canvas.itemconfigure(self.inds_to_id[inds_tuple], fill=color_hex)
self.canvas.itemconfigure(self._debug_text_id, text=self.frame_ind)
self.frame_ind += 1
adjusted_delay = round((self.start_time + self.args["frame_delay"] * int(1e6)
* self.frame_ind - func_start_time) / 1e6)
assert adjusted_delay > 1, adjusted_delay # o/w we lagged too far behind, assuming 1 ms for this instruction
self.canvas.after(adjusted_delay, self.display_frame) # TODO: check delay is exact
# TODO: set self time and just sleep until then
def animate(self):
epilepsy_warning_id = self.canvas.create_text(self.width_pixels / 2, self.height_pixels / 2,
text="Warning: Epilepsy")
def delete_and_animate():
self.canvas.delete(epilepsy_warning_id)
self.start_time = time.time_ns()
self.display_frame()
self.canvas.after(5000, delete_and_animate)
# self.display_frame()
self.root.mainloop()
if __name__ == "__main__":
args = parse_args()
rand_bin_seq = np.random.randint(2, size=1000000)
frames = seq_to_frames(rand_bin_seq, args)
AnimatedFrames(frames, args).animate()

View file

@ -1,6 +0,0 @@
def rgb_to_hex(rgb_list: list[int]) -> str:
"""
Converts a list of RGB values to a hex string.
"""
r, g, b = rgb_list
return f"#{r:02x}{g:02x}{b:02x}"