To review, a **directed** graph consists of edges that can only be traversed in one direction. Additionally, a **acyclic** graph defines a graph which does not contain cycles, meaning you are unable to traverse across one or more edges and return to the node you started on. Putting these definitions together, a **directed acyclic** graph, sometimes abbreviated as DAG, is a graph which has edges which can only be traversed in one direction and does not contain cycles.
A [topological sort](https://en.wikipedia.org/wiki/Topological_sorting) of a directed acyclic graph is a linear ordering of its vertices such that for every directed edge $u\to v$ from vertex $u$ to vertex $v$, $u$ comes before $v$ in the ordering.
One useful property of directed acyclic graphs is, as the name suggests, that there exists no cycles. If we consider each node in the graph as a state, we can perform dynamic programming on the graph if we process the states in an order that guarantees for every edge, $u\to v$ that $u$ is processed before $v$. Fortunately, this is the exact definition of a topological sort!
Let `dp[curr] = longest path ending at the node curr`. Then, if we process states in topological order, the transition is relatively straightforward: `dp[curr] = max of all dp[prev] where prev represents a node with an edge going into the current node` (word better?). To reiterate, since the states a processed in topological order, we can guarantee that all possible `dp[prev]` are computed before we compute `dp[curr]`.
However, not all problems clearly give you directed acyclic graphs (ex. [Plat - Cave Paintings](http://usaco.org/index.php?page=viewproblem2&cpid=996)). An important step in many problems is to reduce the statement into a directed acyclic graph. See the editorial of the linked problem for more information.